Artículo

Artículo de Acceso Abierto. Puede ser descargado en su versión final
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Adsorption on single planar walls and filling of slits with identical planar walls are investigated in the frame of the density functional theory. In this sort of slits the external potential is symmetric with respect to its central plane. Calculations were carried out by applying both the canonical and grand canonical ensembles (CE and GCE, respectively). The behavior is analyzed by varying the strength of the adsorbate-substrate attraction, the temperature T, and the coverage Results obtained for physisorption of Xe on alkaline surfaces are reported in the present work. Prewetting (PW) lines and wetting temperatures, T w, are determined from the analysis of adsorption on single walls. The filling of slits is analyzed for temperatures T T w. It is found that whenever for a given Xe-substrate combination the adsorption on a single wall exhibits a first-order wetting transition then asymmetric profiles that break the left-right symmetry of the external potential appear in the filling of an equivalent slit. These spontaneously symmetry breaking (SSB) solutions occur in a restricted range of with a T-dependent width. In the case of closed slits analyzed in the CE scheme, the obtained asymmetric profiles exhibit lower Helmholtz free energies than the symmetric species and, therefore, could be stabilized in this geometry. For open slits, the GCE scheme yields all the symmetric and SSB states in the corresponding convex regimes of the free energy. It is shown that both the CE and the GCE frames yield three coexistent states, two symmetric and one asymmetric twofold degenerate. Both a PW line and the related SSB effect terminate at the same temperature. For rather strongly attractive surfaces reentrant SSB states are found at a fixed value of T. © Copyright 2011 Author(s).

Registro:

Documento: Artículo
Título:Full correspondence between asymmetric filling of slits and first-order phase transition lines
Autor:Szybisz, L.; Sartarelli, S.A.
Filiación:Laboratorio TANDAR, Departamento de Fsica, Comisin Nacional de Energa Atmica, Av. del Libertador 8250, RA-1429 Buenos Aires, Argentina
Departamento de Fsica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, RA-1428 Buenos Aires, Argentina
Consejo Nacional de Investigaciones Cientficas y Técnicas, Av. Rivadavia 1917, RA-1033 Buenos Aires, Argentina
Instituto de Desarrollo Humano, Universidad Nacional de General Sarmiento, Gutierrez 1150, RA-1663 San Miguel, Argentina
Palabras clave:Adsorbate-substrate; Asymmetric profile; Attractive surfaces; External potential; First-order phase transitions; First-order wetting transitions; Grand canonical ensemble; Left-right symmetry; Planar walls; Pre-wetting; Single Wall; Symmetry-breaking; Wetting temperature; Density functional theory; Free energy; Geometry; Physisorption; Wetting; Filling
Año:2011
Volumen:1
Número:4
DOI: http://dx.doi.org/10.1063/1.3664297
Handle:http://hdl.handle.net/20.500.12110/paper_21583226_v1_n4_p_Szybisz
Título revista:AIP Advances
Título revista abreviado:AIP Adv.
ISSN:21583226
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_21583226_v1_n4_p_Szybisz.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21583226_v1_n4_p_Szybisz

Referencias:

  • (2009) J. Low Temp. Phys., 157, p. 75. , Special Issue: Wetting, Spreading and Filling, Guest Eds. M. S. Petersen and M. W. Cole, 10.1007/s10909-009-9920-0
  • Pandit, R., Schick, M., Wortis, M., Systematics of multilayer adsorption phenomena on atttractive substrates (1982) Phys. Rev. B, 26, pp. 5112-5140
  • Pandit, R., Fisher, M.E., Wetting transitions near bulk triple points (1983) Phys. Rev. Lett., 51, pp. 1772-1775. , 10.1103/PhysRevLett.51.1772
  • Sikkenk, J.H., Indekeu, J.O., Van Leeuwen, J.M.J., Vossnack, E.O., Molecular-dynamics simulation of wetting and drying at solid-fluid interfaces (1987) Phys. Rev. Lett., 59, pp. 98-101. , 10.1103/PhysRevLett.59.98
  • Sikkenk, J.H., Indekeu, J.O., Van Leeuwen, J.M.J., Vossnack, E.O., Bakker, A.F., Simulation of wetting and drying at solid-fluid interfaces on the Delft molecular dynamics processor (1988) J. Stat. Phys., 52, pp. 23-44. , 10.1007/BF01016402
  • Tang, J.Z., Harris, J.G., Fluid wetting on molecularly rough surfaces (1995) J. Chem. Phys., 103, pp. 8201-8208. , 10.1063/1.470184
  • Berim, G.O., Ruckenstein, E., Symmetry breaking of the fluid density profiles in closed nanoslits (2007) Journal of Chemical Physics, 126 (12), p. 124503. , DOI 10.1063/1.2715934
  • Szybisz, L., Sartarelli, S.A., Density profiles of Ar adsorbed in slits of C O2: Spontaneous symmetry breaking revisited (2008) Journal of Chemical Physics, 128 (12), p. 124702. , DOI 10.1063/1.2895747
  • Berim, G.O., Ruckenstein, E., Two-dimensional symmetry breaking of fluid density distribution in closed nanoslits (2008) J. Chem. Phys., 128, p. 024704. , 10.1063/1.2816574
  • Sartarelli, S.A., Szybisz, L., Correlation between asymmetric profiles in slits and standard prewetting lines (2009) Papers in Physics, 1, p. 010001. , http://arxiv.org/abs/0909.2244, [also at]. 10.4279/pi010001
  • Sartarelli, S.A., Szybisz, L., Urrutia, I., Spontaneous symmetry breaking and first-order phase transitions of adsorbed fluids (2010) Int. J. Bifurcation Chaos, 20, pp. 287-294. , 10.1142/S0218127410025739
  • Sartarelli, S.A., Szybisz, L., Confinement of Ar between two identical parallel semi-infinite walls (2010) J. Chem. Phys., 132, p. 064701. , 10.1063/1.3306449
  • Berim, G.O., Ruckenstein, E., Symmetry breaking of the density distribution of a quantum fluid in a nanoslit (2009) J. Chem. Phys., 131, p. 184707. , 10.1063/1.3259563
  • Merkel, M., Lowen, H., Symmetry-breaking density profiles in confined liquids (1996) Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 54 (6), pp. 6623-6632
  • Rzysko, W., Patrykiejew, A., Sokoowski, S., Nucleation of fluids confined between parallel walls: A lattice Monte Carlo study (2008) Phys. Rev. e, 77, p. 061602. , 10.1103/PhysRevE.77.061602
  • Edison, J.R., Monson, P.A., Modeling relaxation processes for fluids in porous materials using dynamic mean field theory: An Application to partial wetting (2009) J. Low Temp. Phys., 157, pp. 395-409. , 10.1007/s10909-009-9916-9
  • Sartarelli, S.A., Szybisz, L., Urrutia, I., Adsorption of Ne on alkali surfaces studied with a density functional theory (2009) Phys. Rev. e, 79, p. 011603. , 10.1103/PhysRevE.79.011603
  • Sartarelli, S.A., Szybisz, L., Adsorption of Ar on planar surfaces studied with a density functional theory (2009) Phys. Rev. e, 80, p. 052602. , 10.1103/PhysRevE.80.052602
  • Evans, R., (1992) Fundamentals of Inhomogeneous Fluids, , in, ed. D. Henderson (Decker, New York)
  • Hohenberg, P., Kohn, W., Inhomogeneous electron gas (1964) Phys. Rev., 136, pp. 864-B871. , 10.1103/PhysRev.136.B864
  • Ancilotto, F., Curtarolo, S., Toigo, F., Cole, M.W., Evidence concerning drying behavior of Ne near a Cs surface (2001) Phys. Rev. Lett., 87, p. 206103. , 10.1103/PhysRevLett.87.206103
  • Kierlik, E., Rosinberg, M.L., Free-energy density functional for inhomogeneous hard-sphere fluid: Application to interfacial adsorption (1990) Phys. Rev. A, 42, pp. 3382-3387. , 10.1103/PhysRevA.42.3382
  • Rosenfeld, Y., Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing (1989) Phys. Rev. Lett., 63, pp. 980-983. , 10.1103/PhysRevLett.63.980
  • Roth, R., Evans, R., Lang, A., Kahl, G., Fundamental measure theory for hard-sphere mixtures revisited: The white bear version (2002) Journal of Physics Condensed Matter, 14 (46), pp. 12063-12078. , DOI 10.1088/0953-8984/14/46/313, PII S0953898402384261
  • Mansoori, G.A., Carnahan, N.F., Starling, K.E., Leland Jr., T.W., Equilibrium thermodynamic properties of the mixture of hard spheres (1971) J. Chem. Phys., 54, pp. 1523-1525. , 10.1063/1.1675048
  • Weeks, J.D., Chandler, D., Andersen, H.C., Role of repulsive forces in determining the equilibrium structure of simple liquids (1971) J. Chem. Phys., 54, pp. 5237-5247. , 10.1063/1.1674820
  • Curtarolo, S., Stan, G., Bojan, M.J., Cole, M.W., Steele, W.A., Threshold criterion for wetting at the triple point (2000) Phys. Rev. e, 61, pp. 1670-1675. , 10.1103/PhysRevE.61.1670
  • Rabinovich, V.A., Vasserman, A.A., Nedostup, V.I., Veksler, L.S., (1988) Thermophysical Properties of Neon, Argon, Krypton, and Xenon, , (Hemisphere, Washington, DC)
  • Hansen, J.-P., McDonald, I.R., (2006) Theory of Simple Fluids, , (Elsevier, Amsterdam)
  • Sokoowski, S., Stecki, J., Second surface virial coefficient for argon adsorbed on graghite (1981) J. Phys. Chem., 85, pp. 1741-1746. , 10.1021/j150612a029
  • Smith, B.L., Gardner, P.R., Parker, E.H.C., Surface tension and energy of liquid xenon (1967) J. Chem. Phys., 47, pp. 1148-1152
  • Zollweg, J., Hawkins, G., Benedek, G.B., Surface tension and viscosity of xenon near its critical point (1971) Phys. Rev. Lett., 27, pp. 1182-1185. , 10.1103/PhysRevLett.27.1182
  • Chizmeshya, A., Cole, M.W., Zaremba, E., Weak biding potentials and wetting transitions (1998) J. Low Temp. Phys., 110, pp. 677-682. , 10.1023/A:1022556227148
  • Sinanolu, O., Pitzer, K.S., Interactions between molecules adsorbed on a surface (1960) J. Chem. Phys., 32, pp. 1279-1288. , 10.1063/1.1730910
  • Bruch, L.W., Cole, M.W., Zaremba, E., (1997) Physical Adsorption: Forces and Phenomena, , (Clarendon press, Oxford) [Cha]
  • Ancilotto, F., Toigo, F., Prewetting transitions of Ar and Ne on alkali-metal surfaces (1999) Phys. Rev. B, 60, pp. 9019-9025. , 10.1103/PhysRevB.60.9019
  • Ravikovitch, P.I., Vishnyakov, A., Neimark, A.V., Density functional theories and molecular simulations of adsorption and phase transitions in nanopores (2001) Phys. Rev. e, 64, p. 011602. , 10.1103/PhysRevE.64.011602
  • Zeng, M., Tang, Y., Mi, J., Zhong, C., Improved direct correlation function for density functional theory analysis of pore size distributions (2009) J. Phys. Chem. C, 113, pp. 17428-17436. , 10.1021/jp902803t
  • Szybisz, L., Ristig, M.L., New method of solving the optimized paired-phonon analysis equations and stability of thin films of liquid 4He at T 0 K (1989) Phys. Rev. B, 40, pp. 4391-4404. , 10.1103/PhysRevB.40.4391
  • Clements, B.E., Krotscheck, E., Lauter, H.J., Growth instability in helium films (1993) Phys. Rev. Lett., 70, pp. 1287-1290. , 10.1103/PhysRevLett.70.1287
  • Saslow, W.M., Agnolet, G., Campbell, C.E., Clements, B.E., Krotscheck, E., Theory of first-order layering transitions in thin helium films (1996) Physical Review B - Condensed Matter and Materials Physics, 54 (9), pp. 6532-6538
  • Szybisz, L., Confirmation using Monte Carlo ground-state energies of the instability of free planar films of liquid 4He at T=0 K (1998) Physical Review B - Condensed Matter and Materials Physics, 58 (1), pp. 109-112
  • White, J.A., Gonzlez, A., Romn, F.L., Velasco, S., Density-functional theory of inhomogeneous fluids in the canonical ensemble (2000) Phys. Rev. Lett., 84, pp. 1220-1223. , 10.1103/PhysRevLett.84.1220
  • Neimark, A.V., Ravikovitch, P.I., Vishnyakov, A., Inside the hysteresis loop: Multiplicity of internal states in confined fluids (2002) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 65 (3), pp. 031505/1-031505/6. , http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype= pdf&id=PLEEE8000065000003031505000001&idtype=cvips, DOI 10.1103/PhysRevE.65.031505, 031505
  • Huang, K., (1963) Statistical Mechanics, , (Wiley, New York)
  • Hess, G.B., Sabatini, M.J., Chan, M.H.W., Nonwetting of cesium by neon near its critical point (1997) Physical Review Letters, 78 (9), pp. 1739-1742

Citas:

---------- APA ----------
Szybisz, L. & Sartarelli, S.A. (2011) . Full correspondence between asymmetric filling of slits and first-order phase transition lines. AIP Advances, 1(4).
http://dx.doi.org/10.1063/1.3664297
---------- CHICAGO ----------
Szybisz, L., Sartarelli, S.A. "Full correspondence between asymmetric filling of slits and first-order phase transition lines" . AIP Advances 1, no. 4 (2011).
http://dx.doi.org/10.1063/1.3664297
---------- MLA ----------
Szybisz, L., Sartarelli, S.A. "Full correspondence between asymmetric filling of slits and first-order phase transition lines" . AIP Advances, vol. 1, no. 4, 2011.
http://dx.doi.org/10.1063/1.3664297
---------- VANCOUVER ----------
Szybisz, L., Sartarelli, S.A. Full correspondence between asymmetric filling of slits and first-order phase transition lines. AIP Adv. 2011;1(4).
http://dx.doi.org/10.1063/1.3664297