Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this paper, we introduce a dispersion equation for 3D photonic crystals made of parallel layers of non-overlapping spheres, valid when both wavelength and separation between layers are much larger than the distance between neighbouring spheres. This equation is based on the Korringa-Kohn-Rostoker (KKR) wave calculation method developed by Stefanou et al. and can be used to predict the spectral positions of bandgaps in structures made of dispersive spheres. Perfect agreement between the spectral positions of bandgaps predicted with our simplified equation and those obtained with the numerical code MULTEM2 was observed. We find that this simplified relation allows us to identify two types of bandgaps: those related to the constitutive parameters of the spheres and those related to the three dimensional periodicity (distance between layers). Bandgaps of the first type are independent of the frequency and the distance between layers, while those of the second type depend only on these two quantities. We then analyze the influence of the constitutive parameters of the spheres on the spectral position of bandgaps for spheres immersed in dielectric or magnetic homogeneous media. The number and positions of the bandgaps are affected by the permitivity (permeability) of the host medium if the spheres have dispersive permitivity (permeability).

Registro:

Documento: Artículo
Título:Dispersion relation and band gaps of 3D photonic crystals made of spheres
Autor:Güller, F.; Inchaussandague, M.E.; Depine, R.A.
Filiación:Grupo de Materia Condensada, Centro Atómico Constituyentes, GIyA, CNEA, Av. Gral. Paz 1499, San Martín, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Riva- davia 1917, Buenos Aires, Argentina
Grupo de Electromagnetismo Aplicado, Departamento de Física, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, PabellÓn I, Buenos Aires, Argentina
Palabras clave:3D photonic crystals; Band gaps; Constitutive parameters; Dispersion equations; Dispersion relations; Homogeneous media; Host mediums; Korringa-kohn-rostoker; Numerical code; Spectral position; Wave calculations; Dispersion (waves); Energy gap; Permittivity; Photonic crystals; Three dimensional; Spheres
Año:2011
Volumen:19
Página de inicio:1
Página de fin:12
DOI: http://dx.doi.org/10.2528/PIERM11051405
Título revista:Progress In Electromagnetics Research M
Título revista abreviado:Prog. Electromagn. Res. M
ISSN:19378726
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_19378726_v19_n_p1_Guller.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19378726_v19_n_p1_Guller

Referencias:

  • Yablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics (1987) Phys. Rev. Lett., 58 (20), pp. 2059-2062
  • Sakoda, K., (2001) Optical Properties of Photonic Crystals, , Springer-Verlag, Berlin
  • Joannopoulos, J.R., Meade, R.D., Winn, J.N., (1995) Photonic Crystals, , Princeton University Press, Princeton
  • Ho, K.M., Chan, C.T., Soukoulis, C.M., Existence of a photonic gap in periodic dielectric structures (1990) Phys. Rev. Lett., 65 (25), pp. 3152-3155
  • Ohtaka, K., Scattering theory of low-energy photon diffraction (1980) J. Phys. C, 13 (4), p. 667
  • Modinos, A., Scattering of electromagnetic waves by a plane of spheres-formalism (1987) Physica A, 141 (2), pp. 575-588
  • Stefanou, N., Karathanos, V., Modinos, A., Scattering of electromagnetic waves by periodic structures (1992) J. Phys.: Condens. Matter, 4 (36), p. 7389
  • Dorado, L.A., Depine, R.A., Miguez, H., Effect of extinction on the high-energy optical response of photonic crystals (2007) Phys. Rev. B, 75 (24), p. 241101
  • Dorado, L.A., Depine, R.A., Lozano, G., Miguez, H., Interplay between crystal-size and disorder effects in the high-energy optical response of photonic crystal slabs (2007) Phys. Rev. B, 76 (24), p. 245103
  • Stefanou, N., Yannopapas, V., Modinos, A., Heterostructures of photonic crystals: Frequency bands and transmission coefficients (1998) Comput. Phys. Commun., 113 (1), pp. 49-77
  • Stefanou, N., Yannopapas, V., Modinos, A., MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals (2000) Comput. Phys. Commun., 132 (1), pp. 189-196
  • Monsoriu, J., Depine, R.A., Martinez Ricci, M.L., Silvestre, E., Interaction between non-Bragg band gaps in 1D metamaterial photonic crystals (2006) Opt. Express, 14 (26), p. 12958
  • Li, J., Zhou, L., Chan, C.T., Sheng, P., Photonic band gap from a stack of positive and negative index materials (2003) Phys. Rev. Lett., 90 (8), p. 083901
  • Ashcroft, N.W., Mermin, N.D., (1976) Solid State Physics, , Saunders College Publishing, Philadelphia
  • Kapitza, P.L., Dirac, A.M., The reflection of electrons from standing light waves (1933) Mathematical Proceedings of the Cambridge Philosophical Society, 29 (2), pp. 297-300
  • Zachariasen, W.H., (2004) Theory of X-ray Diffraction in Crystals, , Courier Dover Publications, New York

Citas:

---------- APA ----------
Güller, F., Inchaussandague, M.E. & Depine, R.A. (2011) . Dispersion relation and band gaps of 3D photonic crystals made of spheres. Progress In Electromagnetics Research M, 19, 1-12.
http://dx.doi.org/10.2528/PIERM11051405
---------- CHICAGO ----------
Güller, F., Inchaussandague, M.E., Depine, R.A. "Dispersion relation and band gaps of 3D photonic crystals made of spheres" . Progress In Electromagnetics Research M 19 (2011) : 1-12.
http://dx.doi.org/10.2528/PIERM11051405
---------- MLA ----------
Güller, F., Inchaussandague, M.E., Depine, R.A. "Dispersion relation and band gaps of 3D photonic crystals made of spheres" . Progress In Electromagnetics Research M, vol. 19, 2011, pp. 1-12.
http://dx.doi.org/10.2528/PIERM11051405
---------- VANCOUVER ----------
Güller, F., Inchaussandague, M.E., Depine, R.A. Dispersion relation and band gaps of 3D photonic crystals made of spheres. Prog. Electromagn. Res. M. 2011;19:1-12.
http://dx.doi.org/10.2528/PIERM11051405