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Abstract—In this paper, we introduce a dispersion equation for 3D
photonic crystals made of parallel layers of non-overlapping spheres,
valid when both wavelength and separation between layers are much
larger than the distance between neighbouring spheres. This equation
is based on the Korringa-Kohn-Rostoker (KKR) wave calculation
method developed by Stefanou et al. and can be used to predict
the spectral positions of bandgaps in structures made of dispersive
spheres. Perfect agreement between the spectral positions of bandgaps
predicted with our simplified equation and those obtained with the
numerical code MULTEM2 was observed. We find that this simplified
relation allows us to identify two types of bandgaps: those related to
the constitutive parameters of the spheres and those related to the
three dimensional periodicity (distance between layers). Bandgaps
of the first type are independent of the frequency and the distance
between layers, while those of the second type depend only on these
two quantities. We then analyze the influence of the constitutive
parameters of the spheres on the spectral position of bandgaps for
spheres immersed in dielectric or magnetic homogeneous media. The
number and positions of the bandgaps are affected by the permitivity
(permeability) of the host medium if the spheres have dispersive
permitivity (permeability).
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1. INTRODUCTION

The study of three-dimensional (3D) photonic crystals (PCs) has
attracted a lot of attention in recent years and remains the focus of
activity of many research groups. Photonic crystals exhibit potential
applications in optical, infrared and microwave devices [1, 2]. An
interesting aspect of these materials is the existence of frequency
regions, known as photonic bandgaps, over which propagation of
light is forbidden [3, 4]. This property has been proposed for several
technological applications that are still under continuous research.

A typical example of 3D photonic crystal is a stack of layers formed
by spherical particles arranged in a two dimensional periodic lattice.
Among the methods suggested for the calculation of frequency bands
in these kind of structures, the so-called on-shell methods appear to
be numerically efficient and at the same time allow the calculation
of the transmission/reflection coefficient. Electromagnetic interactions
between the scatterers arranged in the periodic lattice are calculated by
means of the layer-multiple-scattering method for spherical scatterers,
usually known as the vector version of the Korringa-Kohn-Rostoker
(KKR) method [5–7]. Recently, reflectance spectra simulated by
adding extinction to the vector KKR method, have shown a clear
correlation with the experimental results in the high energy range [8, 9].

To fully exploit the properties of 3D PCs made of spheres, we
need to understand the origin of the photonic bandgap of the structure.
Unfortunately, the dispersion relation for these systems is a non linear
equation involving many variables and must be solved numerically.
Therefore, it is a difficult task to investigate the influence of the
relevant parameters of the structure (typical dimensions, permittivity
and permeability of the media, etc.) on the spectral positions of the
bandgaps. However, there are situations for which this equation can be
simplified. Although even in these cases the dispersion equation must
be solved numerically, its simpler form allows us to obtain additional
information about the physical mechanisms that lead to the bandgaps.

In this paper, we introduce a dispersion equation for 3D photonic
crystals made of parallel layers of non-overlapping spheres, valid when
both wavelength and separation between layers are much larger than
the distance between neighbouring spheres. This equation is based
on the Korringa-Kohn-Rostoker wave calculation method and can be
used to predict the spectral positions of bandgaps in structures made
of dispersive spheres. The outline of the paper is as follows. In
Section 2, we give details of the approximations involved and the
theoretical steps that lead to the aforementioned relation. Then, in
Section 3, we apply the simplified equation to investigate structures
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made of dispersive spheres and compare the spectral positions of the
bandgaps with those obtained using the MULTEM2 code [10, 11], an
implementation of the KKR method. It can be used to calculate the
transmittance and reflectance of crystal slabs of finite thickness and the
band structure of infinite crystals. We also investigate the influence
of the constitutive parameters of the spheres and of the embedding
medium on the spectral position of the bandgaps. Section 4 concludes
the paper.

2. SIMPLIFIED DISPERSION EQUATION

A schematic representation of the structure studied and its relevant
parameters is shown in Fig. 1. We restrict ourselves to structures
made of identical layers of spheres separated by a distance D = A · ẑ.
Spheres within each layer are located on the sites of a two dimensional
lattice. The characteristic distance between the centers of two adjacent
spheres is denoted by d. Their permittivity and permeability are εs

and µs, respectively. They are immersed in a homogeneous medium
with constitutive parameters ε and µ. A plane wave with wavelength
λ = 2π/k impinges upon the structure.

Figure 1. Photonic crystal composed of identical layers of spheres.
The incident wavevector is parallel to ẑ.

The KKR method allows us to obtain the band structure of an
infinite photonic crystal made of spheres for any value of the ratios
D/d and λ/d. However, if D/d À 1 and λ/d À 1, some assumptions
can be made and the resulting dispersion equation is much simpler. In
what follows we show a brief description of the theoretical steps that
lead to a simplified dispersion equation valid in the low frequency limit
for structures with D/d À 1.
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The electromagnetic field at any point of the host medium can be
written as a sum of plane waves with wavevectors given by [10]:

k±g = (k‖;±
√

k2 − |k‖|2) = (q‖ + g;±
√

k2 − |q‖ + g|2), (1)

where k‖ are the components of kg parallel to the crystal layers, g
is a reciprocal vector of the 2D lattice and q‖ is a vector in the first
Brillouin zone which depends on the direction of incidence. The ±
symbol denotes the sign of the z component of k±g . The amplitudes of
the plane waves are obtained using the following eigenvalue equation
(similar to Equation (65) of [10]):

U
[

[E]+

[E]−

]
= exp (i kb ·A)

[
[E]+

[E]−

]
, (2)

where kb is the Bloch wavevector and [E]+ and [E]− are vectors formed
by the amplitudes, for polarizations S (E parallel to the layer) and P
(H parallel to the layer), of each plane wave traveling in the z > 0 and
z < 0 directions, respectively. The matrix U is the transfer matrix of
the crystal. It in turn is the product of the transfer matrix of the crystal
layer (M) and the field propagator (P), which accounts for the change
of phase of each plane wave as it travels between layers [10]. The sizes
of [E]+, [E]− and the transfer matrix U are determined by the number
of plane waves retained in the series expansion of the scattered field.

If the geometrical parameters are such that D/d À 1, the
amplitudes of the evanescent waves decay abruptly from one layer to
the other. On the other hand, in the low frequency limit (λ/d À 1),
the only propagating plane waves are those with k±g=(0,0). Therefore,
when both conditions hold (D/d and λ/d À 1) we can keep only the
k±g=(0,0) wavevectors in Equation (2). Consequently, the matrices U,

M and P are of dimension 4 × 4 and the vectors [E]+ and [E]− have
only two non-zero components, one for each polarization mode (S or
P ). Moreover, the non-diagonal terms of matrix M are zero since
no polarization conversion occurs and the problem is separated into
two independent polarization modes — one for S and the other for P
polarization. Then, the problem reduces to finding the solution of two
independent 2×2 eigenvalue equations, one for each polarization state.
Equation (2) can be rewritten as:

[
a− b2/a b/a
−b/a 1/a

]
 exp

(
ik+

(0,0) ·A
)

0

0 exp
(
ik−(0,0) ·A

)



[
E+

E−

]

= exp(ikb ·A)
[

E+

E−

]
(3)
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In this equation, [E]+ and [E]− are unknown complex amplitudes
and a and b denote the transmission and reflection coefficients of
the monolayer, respectively. They depend on the incident field, the
geometry of the 3D lattice and the constitutive parameters of the
spheres and of the host medium. From Equation (3), we obtain the
following dispersion relation

cos(kb ·A) =
1

2 a exp(ik+
(0,0) ·A)

{[a exp(ik+
(0,0) ·A)]2

−[b exp(ik+
(0,0) ·A)]2 + 1}. (4)

The above equation can be simplified even further by expressing the
real and imaginary parts of the right hand side of (4) in terms of the
modules and phases of a and b. In the low frequency limit under
consideration the absorbance of the spheres is negligible and energy
conservation requires that: 1 = |a|2 + |b|2. Using this equation and
some trigonometric identities we get:

<[cos(kb ·A)] =
1
|a| [cos(δ + k+

(0,0) ·A)

−|b|2 cos(φ + k+
(0,0) ·A) cos(φ− δ)], (5)

=[cos(kb ·A)] =
−|b|2 sin(φ + k+

(0,0) ·A) cos(φ− δ)

|a| , (6)

where a = |a| exp i δ and b = |b| exp i φ. A photonic band gap occurs
when the right hand side of Equation (6) is non zero, or when the
modulus of the right hand side of Equation (5) is greater than unity.
For simplicity, in what follows we restrict ourselves to the case of
normal incidence. In this case, numerical calculations of φ and δ show
that the value of φ is always ±π/2 + δ, the sign ± depending on the
frequency. Deviations from this identity occur in the tenth decimal
digit and are negligible. Therefore, we obtain:

=[cos(kb ·A)] = 0, (7)

<[cos(kb ·A)] = cos(kb ·A) =
cos(δ + kD)

|a| . (8)

From Equation (7) we deduce that cos(kb ·A) is always a real number.
Equation (8) provides the dispersion relation for the photonic crystal.
There are two terms in the argument of the cosine function: the
kD term accounts for the change of phase of the plane wave as it
travels from one layer to the next and the δ term is the phase of the
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transmission coefficient of a monolayer and does not depend on the
distance between layers. A photonic bandgap occurs when:

| cos(δ + kD)|
|a| > 1 . (9)

3. NUMERICAL RESULTS

The structure we use for our analysis is a stack of two dimensional
square lattices of dispersive spheres embedded in air. The lattice
constant of each layer is d = 4 mm, the radius of the spheres is r = 0.3d
and the layers are separated a distance 10d. We consider two different
cases, A and B. Case A corresponds to spheres with non-dispersive
permeability (µs = 1) and permittivity given by

εs(ν) = 1 +
52

0.92 − ν2
+

102

11.52 − ν2
, (10)

where ν is the frequency measured in GHz. Conversely, case B
corresponds to spheres with non-dispersive permittivity εs = 1 and
permeability

µs(ν) = 1 +
32

0.9022 − ν2
. (11)

The permittivity and permeability functions (10) and (11) have
been used in the study of 1D photonic crystals [12, 13]. In the following
simulations, we will focus on the range of frequencies between 1 GHz
and 10 GHz.

(a) (b)

Figure 2. X vs. ν (solid line) and δ vs. ν (dashed line) for (a) Case
A and (b) Case B.
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In Fig. 2, we plot the quantities X = | cos(δ + kD)/a| vs. ν and
δ vs. ν for case A (Fig. 2(a)) and B (Fig. 2(b)). As we mentioned
before, bandgaps are expected at those values of frequencies for which
X is greater than 1. A detailed observation of Fig. 2 reveals that
there are several values of ν for which this condition is satisfied. In
Fig. 2(a), X exhibits sharp and narrow peaks at ν = 2.56, 2.87, 2.95
and 2.96GHz, approximately (see inset plots). At these frequencies,
the phase δ also has peaks, whereas it is approximately constant in the
rest of the spectrum. Therefore, the spectral positions of the peaks in
X are mainly associated to the behaviour of δ at those frequencies.
δ depends on the geometric parameters of the monolayer and the
constitutive parameters of the spheres. To investigate this dependence,
structures made of layers with other geometries were also studied (not
shown). We found that, in the low frequency limit under consideration,
the layer geometry does not have a significant influence on the value
of δ. This fact suggest that the spectral positions of these bandgaps
are intimately connected with the refractive index of the spheres. In
Fig. 2(b) a similar behaviour is observed; in this case, the peaks appear
at ν = 1.84, 2.08, 2.15 and 2.16 GHz, approximately. The condition
X > 1 is also achieved at ν = 3.78 and 7.47 GHz in both cases (A and
B). However, the behaviour of X at these frequencies is significantly
different from the one recently described. In this case, X is barely
above the value 1 and is affected mainly by the value of the product
kD. It can be easily shown that these bandgaps occur at frequencies
for which the condition of maximum destructive interference between
two successive reflections on the crystal layers is satisfied. Therefore,
as expected, these bandgaps appear at the same frequencies for both
cases A and B since they do not depend on the constitutive parameters
of the spheres. These bandgaps have been extensively investigated in
the field of solid state physics using Bragg’s law [14–16].

Figure 3 shows the band diagram obtained using the code
MULTEM2 for cases A and B. As can be observed, the spectral
positions of the bandgaps predicted by expression (9) and those given
by MULTEM2 code are in very good agreement. Even though the
separation between layers in these examples is 10d, good agreement
was also found in other cases with separation as low as 5d (not shown
here).

To gain further insight into the physical mechanisms that give rise
to the various types of bandgaps, we next analyze the dependence of
X on the frequency and on the permittivity of the spheres (εs) for
the parameters of case A. To do so, we calculate X as a function of
ν and εs, considering both quantities as independent variables. In
Fig. 4 we present a map showing the pairs (ν, εs) for which X > 1,
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(a) (b)

Figure 3. Band structures obtained with MULTEM2 code for (a)
Case A and (b) Case B.

Figure 4. Map showing the pairs (ν, εs) for which X > 1 for case A.
The solid line shows the function εs(ν) given by Equation (10).

which are indicated as gray dots. The map makes it possible to easily
determine the existence and characteristics of band gaps in crystals
with arbitrary εs(ν). The black solid curve represents the function
εs(ν) given by Equation (10).

As can be observed in this figure, there are ranges of frequencies
for which bandgaps always exist, regardless of the value of εs. These
frequencies are 3.5 < ν < 4 GHz and 7 < ν < 7.5GHz, approximately.
At these frequencies the map exhibits grey vertical stripes that extend
over the full range of εs covered in the example. Comparison with
Fig. 2(a) reveal that, as expected, these bandgaps are the ones
associated to the interference between layers. Thus, their positions
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depend mainly on the value kD and are almost independent of εs. On
the other hand, for εs ≈ −1.33,−1.35,−1.55 and −2.5, approximately,
the photonic crystal exhibits bandgaps in the full range of frequencies
investigated. Taking into account the dependence of the permittivity
with the frequency given by Equation (10), these values of permittivity
are achieved when ν = 2.96, 2.95, 2.87 or 2.56GHz, respectively,
values which are in perfect agreement with the spectral positions of
the bandgaps shown in Fig. 2(a). This is a very interesting result
because the bandgaps appear at those frequencies for which the value
of εs coincides with one of the values listed above, regardless of the
functional relationship εs(ν). For εs = 1 the system is essentially an
infinite homogeneous medium. All the energy is transmitted through
the monolayer. It can be seen in the figure that, as expected, there is
no band gap at any frequency for this value of εs. A similar analysis
can be done for the structure of case B (not presented here).

To investigate the influence of the host medium on the band
structure, we will study two new cases, C and D. In case C, the spheres
are immersed in a medium with ε = 2.5 and µ = 1, whereas in case D,
the constitutive parameters of the host medium are ε = 1 and µ = 1.4.
For both situations, the permittivity and permeability of the spheres,
as well as the other parameters of the structure, are the same as in
case A.

In Fig. 5, we show plots of X vs. ν and δ vs. ν for cases
C (Fig. 5(a)) and D (Fig. 5(b)). From Fig. 5(a), we deduce that
the bandgaps at the lower frequencies appear at ν = 1.94, 2.28, 2.37
and 2.38GHz, approximately. These bandgaps are extremely narrow

(a) (b)

Figure 5. X vs. ν (solid line) and δ vs. ν (dashed line) for (a) Case
C and (b) Case D.
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and can be better appreciated in the inset plot. At these spectral
positions, both X and δ increase abruptly and exhibit sharp peaks.
In addition, there are other bandgaps centered at ν = 2.45, 4.77, 7.13
and 9.47GHz. Comparisons with previous figures show that we can
also distinguish two types of bandgaps in these cases. However, the
number and positions of the bandgaps are significantly affected by the
permittivity of the embedding medium.

On the other hand, if the host medium is magnetic but its
permittivity equals 1 (case D), the lowest four gaps occur at, roughly,
the same frequencies as in case A. This feature suggests that for the
parameters chosen in these examples, the permeability of the host
medium does not introduce significant modifications in the spectral
positions of the bandgaps. In Fig. 6 we present the band structure
obtained using MULTEM2 for cases C (Fig. 6(a)) and D (Fig. 6(b)).
As in the previous examples, we also observe in these cases a very good
agreement between the position of the bandgaps observed in Fig. 6 and
the frequencies for which X > 1 in Fig. 5.

(a) (b)

Figure 6. Band structures obtained with MULTEM2 code for (a)
Case C and (b) Case D.

If the spheres are characterized by a dispersive permeability and
a fixed value of the permittivity, the results are analogous: the
permeability of the host medium (but not its permittivity) affects the
number and the positions of the bandgaps.

We conclude that in these structures there are two types of
bandgaps: those related to the interference of the waves dispersed
by different layers of spheres, and those related to the interference
of waves dispersed by the spheres of the same layer. The first type
depends mainly on the distance between layers; the second one is
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essentially a single-layer phenomenon, which in the low frequency limit,
is primarily dependent on the permittivity and permeability of the
spheres. The constitutive parameters of the host medium affect both
types of bandgaps.

4. CONCLUSIONS

In this paper we have introduced a dispersion equation for 3D photonic
crystals made of parallel layers of non-overlapping spheres, valid
when both wavelength and separation between layers are much larger
than the distance between neighbouring spheres. This equation can
be used to predict the spectral positions of bandgaps in structures
made of dispersive spheres. We find that this simplified relation
allows us to identify two types of bandgaps: those caused by the
interaction of the field with the spheres within a monolayer and those
due to the destructive interference between the waves reflected on
the crystal layers. The constitutive parameters of the embedding
medium affect both types of bandgaps. Perfect agreement between the
spectral positions of bandgaps predicted by our simplified equation and
those obtained with MULTEM2 code was observed. We have shown
examples to illustrate the influence of the constitutive parameters of
the spheres on the spectral positions of bandgaps, for spheres immersed
in dielectric and magnetic homogeneous media. The εs− ν maps allow
us to easily determine the existence and characteristics of bandgaps in
crystals with arbitrary dielectric function.
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