Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Invariance properties of physical systems govern their behaviour: energy conservation in turbulence drives a wide distribution of energy among modes, as observed in geophysical or astrophysical flows. In ideal hydrodynamics, the role of the invariance of helicity (correlation between velocity and its curl, measuring departures from mirror symmetry) remains unclear since it does not alter the energy spectrum. However, in the presence of rotation, significant differences emerge between helical and non-helical turbulent flows. We first briefly outline some of the issues such as the partition of energy and helicity among modes. Using massive numerical simulations, we then show that smallscale structures and their intermittency properties differ according to whether helicity is present or not, in particular with respect to the emergence of Beltrami core vortices that are laminar helical vertical updraft vortices. These results point to the discovery of a small parameter besides the Rossby number, a fact that would relate the problem of rotating helical turbulence to that of critical phenomena, through the renormalization group and weak-turbulence theory. This parameter can be associated with the adimensionalized ratio of the energy to helicity flux to small scales, the three-dimensional energy cascade being weak and self-similar. copy; 2010 The Royal Society.

Registro:

Documento: Artículo
Título:The interplay between helicity and rotation in turbulence: Implications for scaling laws and small-scale dynamics
Autor:Pouquet, A.; Mininni, P.D.
Filiación:Computational and Information Systems Laboratory, United States
Earth and Sun Systems Laboratory, National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000, United States
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina
Palabras clave:Helicity; Intermittency; Scaling laws; Structures; Turbulence; Universality; Computer simulation; Rotation; Scaling laws; Spectroscopy; Statistical mechanics; Astrophysical flows; Beltrami; Critical phenomenon; Energy spectra; Helical turbulence; Helicities; Intermittency; Mirror symmetry; Numerical simulation; Physical systems; Renormalization group; Rossby numbers; Royal society; Self-similar; Small scale; Small-scale dynamics; Small-scale structures; Three-dimensional energy; Turbulence theory; Turbulence
Año:2010
Volumen:368
Número:1916
Página de inicio:1635
Página de fin:1662
DOI: http://dx.doi.org/10.1098/rsta.2009.0284
Título revista:Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Título revista abreviado:Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
ISSN:1364503X
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_1364503X_v368_n1916_p1635_Pouquet.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1364503X_v368_n1916_p1635_Pouquet

Referencias:

  • Mininni, P.D., Alexakis, A., Pouquet, A., Large-scale flow effects, energy transfer, and self-similarity on turbulence (2006) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 74 (1), p. 016303. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevE.74.016303&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevE.74.016303
  • André, J.C., Lesieur, M., Influence of helicity on the evolution of isotropic turbulence at high Reynolds number (1977) J. Fluid Mech., 81, pp. 187-207. , doi:10.1017/S0022112077001979
  • Anthes, R., (1982) Tropical Cyclones, Their Evolution, Structure and Effects, , Meteorological Monographs, no. 41. Boston, MA: American Meteorological Society
  • Arnold, V.I., Remarks on behavior of the flows of a three-dimensional ideal fluid under a small perturbation of initial velocity field (1972) Pril. Matem i Mekh., 36, pp. 255-262. , in Russian
  • Arnold, V.I., Korkina, E.I., The growth of a magnetic field in a three-dimensional incompressible flow (1983) Vetsnik Moscow State University Ser. Math., 3, pp. 43-46. , in Russian
  • Baerenzung, J., Politano, H., Ponty, Y., Pouquet, A., Spectral modeling of turbulent flows and the role of helicity (2008) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 77 (4), p. 046303. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevE.77.046303&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevE.77.046303
  • Baerenzung, J., Rosenberg, D., Mininni, P.D., Pouquet, A., Submitted. Where we Observe that Helical Turbulence Prevails Over Inertial Waves in Forced Rotating Flows at High Reynolds and low Rossby numbers, , http://arxiv.org/abs/0912.3414
  • Baroud, C.N., Plapp, B.B., She, Z.-S., Swinney, H.L., Anomalous self-similarity in a turbulent rapidly rotating fluid (2002) Physical Review Letters, 88 (11), pp. 1145011-1145014. , 114501
  • Bartello, P., Métais, O., Lesieur, M., Coherent structures in rotating three-dimensional turbulence (1994) J. Fluid Mech., 273, pp. 1-29. , doi:10.1017/S0022112094001837
  • Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F., Succi, S., Extended self-similarity in turbulent flows (1993) Phys. Rev. E, 48, pp. R29-R32. , doi:10.1103/ PhysRevE.48.R29
  • Bernard, D., Boffetta, G., Celani, A., Falkovich, G., Conformal invariance in two-dimensional turbulence (2006) Nature Physics, 2 (2), pp. 124-128. , DOI 10.1038/nphys217, PII N217
  • Bernard, D., Boffetta, G., Celani, A., Falkovich, G., Inverse turbulent cascades and conformally invariant curves (2007) Physical Review Letters, 98 (2), p. 024501. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.024501&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.024501
  • Boffetta, G., Energy and enstrophy fluxes in the double cascade of two-dimensional turbulence (2007) Journal of Fluid Mechanics, 589, pp. 253-260. , DOI 10.1017/S0022112007008014, PII S0022112007008014
  • Boffetta, G., Celani, A., Vergassola, M., Inverse energy cascade in two-dimensional turbulence: Deviations from Gaussian behavior (2000) Phys. Rev. E, 61, pp. R29-R32. , doi:10.1103/ PhysRevE.61.R29
  • Brissaud, A., Frisch, U., Léorat, J., Lesieur, M., Mazure, A., Helicity cascades in fully developed isotropic turbulence (1973) Phys. Fluids, 16, pp. 1366-1367. , doi:10.1063/1.1694520
  • Cambon, C., Scott, J.F., Linear and nonlinear models of anisotropic turbulence (1999) Annual Review of Fluid Mechanics, 31, pp. 1-53. , DOI 10.1146/annurev.fluid.31.1.1
  • Cambon, C., Rubinstein, R., Godeferd, F.S., Advances in wave turbulence: Rapidly rotating flows (2004) New Journal of Physics, 6, pp. 1-29. , http://www.iop.org/EJ/abstract/1367-2630/6/1/073, DOI 10.1088/1367-2630/6/1/073, PII S1367263004757079
  • Cardy, J., Falkovich G. G, Gawedski, K., (2008) Non-Equilibrium Statistical Mechanics and Turbulence, , In (eds S. Nazarenko & O. Zaboronski), London Mathematical Society, Lecture Note Series, no. 355. Cambridge, UK: Cambridge University Press
  • Chen, Q., Chen, S., Eyink, G.L., The joint cascade of energy and helicity in three-dimensional turbulence (2003) Physics of Fluids, 15 (2), pp. 361-374. , DOI 10.1063/1.1533070
  • Chen, Q., Chen, S., Eyink, G., Holm, D., Intermittency in the joint cascade of energy and helicity (2003) Phys. Rev. Lett., 90 (214), p. 503. , doi:10.1103/PhysRevLett.90.214503
  • Chertkov, M., Kolokolov, I., Lebedev, V., (2009) Universal Velocity Profile for Coherent Vortices in Two-Dimensional Turbulence, , http://arxiv.org/abs/0909.1575
  • Choi, Y., Lvov, Y.V., Nazarenko, S., Pokorni, B., Anomalous probability of large amplitudes in wave turbulence (2005) Physics Letters, Section A: General, Atomic and Solid State Physics, 339 (3-5), pp. 361-369. , DOI 10.1016/j.physleta.2005.02.072
  • Clyne, D.J., Mininni, P., Norton, A., Rast, M., Interactive desktop analysis of high resolution simulations: Application to turbulent plume dynamics and current sheet formation (2007) New Journal of Physics, 9, p. 301. , http://www.iop.org/EJ/article/1367-2630/9/8/301/njp7_8_301.pdf, DOI 10.1088/1367-2630/9/8/301, PII S136726300743614X
  • Connaughton, C., Nazarenko, S., Warm cascades and anomalous scaling in a diffusion model of turbulence (2004) Phys. Rev. Lett., 92 (44), p. 501. , doi:10.1103/PhysRevLett.92.044501
  • Connaughton, C., Nazarenko, S., Newell, A.C., Dimensional analysis and weak turbulence (2003) Physica D, 184, pp. 86-97. , doi:10.1016/S0167-2789(03)00214-8
  • Davies-Jones Robert, STREAMWISE VORTICITY: THE ORIGIN OF UPDRAFT ROTATION IN SUPERCELL STORMS. (1984) Journal of the Atmospheric Sciences, 41 (20), pp. 2991-3006
  • Ditlevsen, P.D., Giuliani, P., Dissipation in helical turbulence (2001) Physics of Fluids, 13 (11), pp. 3508-3509. , DOI 10.1063/1.1404138
  • Dubrulle, B., Valdettaro, L., Consequences of rotation in energetics of accretion disks (1992) Astron. Astrophys., 263, pp. 387-400
  • Duquenne, A.M., Guiraud, P., Bertrand, J., Swirl-induced improvement of turbulent mixing: Laser study in a jet-stirred tubular reactor (1993) Chem. Eng. Sci., 48, pp. 3805-3812. , doi:10.1016/0009-2509(93)80223-D
  • Forster, D., Nelson, D.R., Stephen, M.J., Long-time tails and the large-eddy behavior of a randomly stirred fluid (1976) Phys. Rev. Lett., 36, pp. 867-870. , doi:10.1103/PhysRevLett.36.867
  • Frisch, U., (1995) Turbulence: The Legacy of A.N. Kolmogorov, , Cambridge, UK: Cambridge University Press
  • Frisch, U., Scholl, H., She, Z.-S., Sulem, P.L., A new large-scale instability in threedimensional incompressible flows lacking parity invariance (1988) Fluid Dyn. Res., 3, pp. 295-298. , doi:10.1016/0169-5983(88)90081-0
  • Frisch, U., Kurien, S., Pandit, R., Pauls, W., Ray, S., Wirth, A., Zhu, J.Z., Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence (2008) Phys. Rev. Lett., 101 (144), p. 501. , doi:10.1103/PhysRevLett.101.144501
  • Galloway, D., Frisch, U., A numerical investigation of magnetic field generation in a flow with chaotic streamlines (1984) Geophys. Astrophys. Fluid Dyn., 29 (13-18), p. 03091928408248180. , doi:10.1080/
  • Galloway, D.J., Proctor, M.R.E., Numerical calculations of fast dynamos in smooth velocity fields with realistic diffusion (1992) Nature, 356, pp. 691-693. , doi:10.1038/356691a0
  • Galtier, S., Weak inertial-wave turbulence theory (2003) Phys. Rev. E, 68 (15), p. 301. , doi:10.1103/PhysRevE.68.015301
  • Galtier, S., Nazarenko, S., Newell, A., Pouquet, A., A weak turbulence theory for incompressible MHD (2000) J. Plasma Phys., 63, pp. 447-488. , doi:10.1017/S0022377899008284
  • Gilbert, A.D., Fast dynamo action in a steady chaotic flow (1991) Nature, 350, pp. 483-485. , doi:10.1038/350483a0
  • Gomez, T., Politano, H., Pouquet, A., Exact relationship for third-order structure functions in helical flows (2000) Phys. Rev. Lett., 61, pp. 5321-5325. , doi:10.1103/PhysRevE.61.5321
  • Grappin, R., Frisch, U., Léorat, J., Pouquet, A., Alfvénic fluctuations as asymptotic states of MHD turbulence (1982) Astron. Astrophys., 105, pp. 6-14
  • Grappin, R., Pouquet, A., Léorat, J., Dependence of MHD turbulence spectra on the velocity field-magnetic field correlation (1983) Astron. Astrophys., 123, pp. 51-58
  • Greenspan, H.P., (1968) The Theory of Rotating Fluids, , Cambridge, UK: Cambridge University Press
  • Hénon, M., Sur la topologie des lignes de courant dans un cas particulier (1966) C.R. Acad. Sci. Paris, 262, pp. 312-314. , in French
  • Herring, J.R., Approach of axisymmetric turbulence to isotropy (1975) Phys. Fluids, 17, pp. 859-872. , doi:10.1063/1.1694822
  • Holm, D.D., Kerr, R., Transient vortex events in the initial value problem for turbulence (2002) Physical Review Letters, 88 (24), pp. 2445011-2445014. , 244501
  • Hopfinger, E., Browand, F., Gagne, Y., Turbulence and waves in a rotating tank (1982) J. Fluid Mech., 125, pp. 505-534. , doi:10.1017/S0022112082003462
  • Iroshnikov, P.S., Turbulence of a conducting fluid in a strong magnetic field (1963) Sov. Astron., 7, pp. 566-571
  • Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K., Uno, A., Energy spectrum in the near dissipation range of high resolution direct numerical simulation of turbulence (2005) Journal of the Physical Society of Japan, 74 (5), pp. 1464-1471. , DOI 10.1143/JPSJ.74.1464
  • Jacobitz, F.G., Liechtenstein, L., Schneider, K., Farge, M., On the structure and dynamics of sheared and rotating turbulence: Direct numerical simulation and wavelet-based coherent vortex extraction (2008) Physics of Fluids, 20 (4), p. 045103. , DOI 10.1063/1.2896284
  • Jacquin, L., Leuchter, O., Cambon, C., Mathieu, J., Homogeneous turbulence in the presence of rotation (1990) J. Fluid Mech., 220, pp. 1-52. , doi:10.1017/S0022112090003172
  • Kolmogorov, A.N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds number (1941) Dokl. Akad. Nauk SSSR, 30, pp. 9-13
  • Kraichnan, R.H., Inertial-range spectrum of hydromagnetic turbulence (1965) Phys. Fluids, 8, pp. 1385-1387. , doi:10.1063/1.1761412
  • Kraichnan, R.H., Eddy viscosity in two and three dimensions (1976) J. Atmos. Sci., 33, pp. 1521-1536. , (doi:10.1175/1520-0469(1976)0332.0.CO;2)
  • Kraichnan, R.H., Montgomery, D., Two-dimensional turbulence (1980) Rep. Prog. Phys., 43, pp. 547-619. , doi:10.1088/0034-4885/43/5/001
  • Krstulovic, G., Mininni, P.D., Brachet, M.E., Pouquet, A., Cascades, thermalization and eddy viscosity in helical Galerkin truncated Euler flows (2009) Phys. Rev. E, 79 (56), p. 304. , doi:10.1103/PhysRevE.79.056304
  • Kurien, S., Taylor, M.A., Matsumoto, T., Cascade time scales for energy and helicity in homogeneous isotropic turbulence (2004) Phys. Rev. E, 69 (66), p. 313. , doi:10.1103/PhysRevE.69.066313
  • Lautenschlager, M., Eppel, D.P., Thacker, W.C., Subgrid parametrization in helical flows (1988) Beitr. Phys. Atmos., 61, pp. 87-97
  • Lee, E., Brachet, M.E., Pouquet, A., Mininni, P.D., Rosenberg, D., On the lack of universality in decaying magnetohydrodynamic turbulence Phys. Rev.E., , http://arxiv.org/abs/0906.2506, In press
  • Levina, G.V., Burylov, I.A., Numerical simulation of helical-vortex effects in Rayleigh- Bénard convection (2006) Nonlinear Process. Geophys., 13, pp. 205-222
  • Lewellen, D.C., Lewellen, W.S., Near-surface intensification of tornado vortices (2007) Journal of the Atmospheric Sciences, 64 (7), pp. 2176-2194. , DOI 10.1175/JAS3965.1
  • Lilly Douglas, K., STRUCTURE, ENERGETICS AND PROPAGATION OF ROTATING CONVECTIVE STORMS. PART II: HELICITY AND STORM STABILIZATION. (1986) Journal of the Atmospheric Sciences, 43 (2), pp. 126-140
  • Ma, S.-K., Mazenko, G.F., Critical dynamics of ferromagnets in 6-3 dimensions: General discussion and detailed calculation (1975) Phys Rev. B, 11, pp. 4077-4100. , doi:10.1103/ PhysRevB.11.4077
  • Markovski, P.M., Straka, J.M., Rasmussen, E.N., Blanchard, D.O., Variability of storm-relative helicity during VORTEX (1998) Mon. Weather Rev., 126, pp. 2959-2971. , doi:10.1175/ 1520-0493(1998)126<2959:VOSRHD>2.0.CO;2
  • Matthaeus, W.H., Pouquet, A., Mininni, P.D., Dmitruk, P., Breech, B., Rapid alignment of velocity and magnetic field in magnetohydrodynamic turbulence (2008) Physical Review Letters, 100 (8), p. 085003. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.100.085003&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.100.085003
  • McWilliams, J.C., The emergence of isolated coherent vortices in turbulent flow (1984) J. Fluid Mech., 146, pp. 21-43. , doi:10.1017/S0022112084001750
  • Mininni, P.D., Inverse cascades and a effect at a low magnetic Prandtl number (2007) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 76 (2), p. 026316. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevE.76.026316&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevE.76.026316
  • Mininni, P.D., Pouquet, A., Helicity cascades in rotating turbulence (2009) Phys. Rev. E, 79 (26), p. 304. , doi:10.1103/PhysRevE.79.026304
  • Mininni, P.D., Pouquet, A., Rotating helical turbulence. Part I. Global evolution and spectral behavior Phys. Fluids, , http://arxiv.org/abs/0909.1272, In press a
  • Mininni, P.D., Pouquet, A., Helical rotating turbulence. Part II. Intermittency, scale invariance and structures Phys. Fluids, , http://arxiv.org/abs/0909.1275, In press b
  • Mininni, P.D., Alexakis, A., Pouquet, A., Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers (2009) Phys. Fluids, 21 (15), p. 108. , doi:10.1063/1.3064122
  • Moffatt, H.K., The degree of knottedness of tangled vortex lines (1969) J. Fluid Mech., 35, pp. 117-129. , doi:10.1017/S0022112069000991
  • Moffatt, H.K., Transport effects associated with turbulence with particular attention to the influence of helicity (1983) Rep. Prog. Phys., 46, pp. 621-664. , doi:10.1088/0034-4885/46/5/002
  • Moffatt, H.K., Tsinober, A., Helicity in laminar and turbulent flow (1992) Annu. Rev. Fluid Mech., 24, pp. 281-312. , doi:10.1146/annurev.fl.24.010192.001433
  • Monchaux, R., Berhanu, M., Bourgoin, M., Moulin, M., Odier, Ph., Pinton, J.-F., Volk, R., Ravelet, F., Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium (2007) Physical Review Letters, 98 (4), p. 044502. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.044502&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.044502
  • Moreau, J.J., Constantes d'un îlôt tourbillonnaire en fluide parfait barotrope (1961) C.R. Acad. Sci. Paris, 252, pp. 2810-2812
  • Morize, C., Moisy, F., Rabaud, M., Decaying grid-generated turbulence in a rotating tank (2005) Physics of Fluids, 17 (9), pp. 1-11. , DOI 10.1063/1.2046710, 095105
  • Müller, W.-C., Thiele, M., Scaling and energy transfer in rotating turbulence (2007) Europhys. Lett., 77 (34), p. 003. , doi:10.1209/0295-5075/77/34003
  • Nazarenko, S., Schekochihin, A., Critical balance in magnetohydrodynamic, rotating and stratified turbulence Towards a Universal Scaling Conjecture, , http://arxiv.org/abs/0904:3488, Submitted
  • Newell, A.C., Nazarenko, S., Biven, L., Wave turbulence and intermittency (2001) Physica D: Nonlinear Phenomena, 152-153, pp. 520-550. , DOI 10.1016/S0167-2789(01)00192-0, PII S0167278901001920
  • Noether, E., Invariante variations probleme (1918) Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen Math. Phys. Klasse, 1, pp. 235-257. , [English transl. in: Travel M.A. 1971 Transport theory and statistical physics, 1, 183-207.]
  • Olla, P., Three applications of scaling to inhomogeneous, anisotropic turbulence (1998) Phys. Rev. E, 57, pp. 2824-2831. , doi:10.1103/PhysRevE.57.2824
  • Pedlosky, J., (1986) Geophysical Fluid Dynamics, , Berlin, Germany: Springer
  • Pelz, R., Yakhot, V., Orszag, S.A., Velocity-vorticity patterns in turbulent flow (1985) Phys. Rev. Lett., 54, pp. 2505-2508. , doi:10.1103/PhysRevLett.54.2505
  • Pierrehumbert, R.T., Held, I.M., Swanson, K.L., Spectra of local and nonlocal two-dimensional turbulence (1994) Chaos Solitons Fractals, 4, pp. 1111-1116. , doi:10.1016/ 0960-0779(94)90140-6
  • Pouquet, A., Patterson, G.S., NUMERICAL SIMULATION OF HELICAL MAGNETOHYDRODYNAMIC TURBULENCE. (1978) Journal of Fluid Mechanics, 85 (PART 2), pp. 305-323
  • Pouquet, A., Fournier, J.D., Sulem, P.L., IS HELICITY RELEVANT FOR LARGE SCALE STEADY STATE THREE-DIMENSIONAL TURBULENCE? (1978) J Phys (Paris) Lett, 39 (13), pp. l199-l203
  • Rogers Michael, M., Moin Parviz, STRUCTURE OF THE VORTICITY FIELD IN HOMOGENEOUS TURBULENT FLOWS. (1987) Journal of Fluid Mechanics, 176, pp. 33-66
  • Rotunno, R., An investigation of a three-dimensional asymmetric vortex (1984) J. Atmos. Sci., 41, pp. 283-298. , doi:10.1175/1520-0469(1984)041<0283:AIOATD>2.0.CO;2
  • Sagaut, P., Cambon, C., (2008) Homogeneous Turbulence Dynamics, , Cambridge, UK: Cambridge University Press
  • Sanada, T., Helicity production in the transition to chaotic flows simulated by Navier-Stokes equation (1993) Phys. Rev. Lett., 70, pp. 3035-3038. , doi:10.1103/PhysRevLett.70.3035
  • Seiwert, J., Morize, C., Moisy, F., On the decrease of intermittency in decaying rotating turbulence (2008) Phys. Fluids, 20 (71), p. 702. , doi:10.1063/1.2949313
  • Shaw, R.A., Oncley, S.P., Acceleration intermittency and enhanced collision kernels in turbulent clouds (2001) Atmospheric Research, 59-60, pp. 77-87. , DOI 10.1016/S0169-8095(01)00110-7, PII S0169809501001107
  • She, Z.-S., Leveque, E., Universal scaling laws in fully developed turbulence (1994) Physical Review Letters, 72 (3), pp. 336-339
  • Simand, C., Chillà, F., Pinton, J.-F., Study of inhomogeneous turbulence in the closed flow between corotating disks (2000) Europhys. Lett., 49, pp. 336-342. , doi:10.1209/epl/i2000-00501-8
  • Smith, L.M., Waleffe, F., Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence (1999) Physics of Fluids, 11 (6), pp. 1608-1622
  • Smith, L.M., Chasnov, J.R., Waleffe, F., Crossover from two- to three-dimensional turbulence (1996) Physical Review Letters, 77 (12), pp. 2467-2470
  • Tabeling, P., Two-dimensional turbulence: a physicist approach (2002) Phys. Rep., 362, pp. 1-62. , doi:10.1016/S0370-1573(01)00064-3
  • Van Bokhoven, L.J.A., Clercx, H.J.H., Van Heijst, G.J.F., Trieling, R.R., Experiments on rapidly rotating turbulent flows (2009) Phys. Fluids, 21 (96), p. 601. , doi:10.1063/1.3197876
  • Waleffe, F., Inertial transfers in the helical decomposition (1993) Phys. Fluids, 5 A, pp. 677-685. , doi:10.1063/1.858651
  • Wurman, J., The multiple-vortex structure of a tornado (2002) Weather Forecast., 17, pp. 473-505. , doi:10.1175/1520-0434(2002)017<0473:TMVSOA>2.0.CO;2
  • Wurman, J., Straka, J.M., Rasmussen, E.N., Fine-scale Doppler radar observations of tornadoes (1996) Science, 272 (5269), pp. 1774-1777
  • Yahalom, A., Helicity conservation via the Noether theorem (1995) J. Math. Phys., 36, pp. 1324-1327. , doi:10.1063/1.531123
  • Yokoi, N., Yoshizawa, A., Statistical analysis of the effects of helicity in inhomogeneous turbulence (1993) Phys. Fluids, 5 A, pp. 464-477
  • Zakharov, V.E., Lvov, V.S., Falkovich, G.G., (1992) Kolmogorov Spectra of Turbulence, , Berlin, Germany: Springer
  • Zeman, O., A note on the spectra and decay of rotating homogeneous turbulence (1994) Physics of Fluids, 6 (10), pp. 3221-3223. , DOI 10.1063/1.868053
  • Zhong, J.-Q., Stevens, R.J.A.M., Clercx, H.J.H., Verzicco, R., Lohse, D., Ahlers, G., Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Bénard convection (2009) Phys. Rev. Lett., 102 (44), p. 502. , doi:10.1103/PhysRevLett.102.044502
  • Zhou, Y., A phenomenological treatment of rotating turbulence (1995) Phys. Fluids, 7, pp. 2092-2094. , doi:10.1063/1.868457
  • Zimmerman, W.B., Fluctuations in passive tracer concentration due to mixing by coherent structures in anisotropic, homogeneous, helical turbulence (1996) IChemE Symp. Ser., 140, pp. 213-221

Citas:

---------- APA ----------
Pouquet, A. & Mininni, P.D. (2010) . The interplay between helicity and rotation in turbulence: Implications for scaling laws and small-scale dynamics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1916), 1635-1662.
http://dx.doi.org/10.1098/rsta.2009.0284
---------- CHICAGO ----------
Pouquet, A., Mininni, P.D. "The interplay between helicity and rotation in turbulence: Implications for scaling laws and small-scale dynamics" . Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1916 (2010) : 1635-1662.
http://dx.doi.org/10.1098/rsta.2009.0284
---------- MLA ----------
Pouquet, A., Mininni, P.D. "The interplay between helicity and rotation in turbulence: Implications for scaling laws and small-scale dynamics" . Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 368, no. 1916, 2010, pp. 1635-1662.
http://dx.doi.org/10.1098/rsta.2009.0284
---------- VANCOUVER ----------
Pouquet, A., Mininni, P.D. The interplay between helicity and rotation in turbulence: Implications for scaling laws and small-scale dynamics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010;368(1916):1635-1662.
http://dx.doi.org/10.1098/rsta.2009.0284