Artículo

Artículo de Acceso Abierto. Puede ser descargado en su versión final
Consulte la política de Acceso Abierto del editor

Abstract:

We study the existence of weak solutions to the equation Δpu = |u|p-2u + f(x, u) with the nonlinear boundary condition |∇u|p-2∂u/∂v = λ|u|p-2u - h(x, u). We assume Landesman-Lazer type conditions and use variational arguments to prove the existence of solutions.

Registro:

Documento: Artículo
Título:Weak solutions for the p-Laplacian with a nonlinear boundary condition at resonance
Autor:Martínez, S.; Rossi, J.D.
Filiación:Departamento de Matemática, FCEyN, UBA, (1428) Buenos Aires, Argentina
Facultad de Matematicas, Universidad Catolica, Casilla 306, Correo 22 Santiago, Chile
Palabras clave:Nonlinear boundary conditions; p-Laplacian; Resonance
Año:2003
Volumen:2003
Página de inicio:1
Página de fin:14
Handle:http://hdl.handle.net/20.500.12110/paper_10726691_v2003_n_p1_Martinez
Título revista:Electronic Journal of Differential Equations
Título revista abreviado:Electron. J. Differ. Equ.
ISSN:10726691
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_10726691_v2003_n_p1_Martinez.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10726691_v2003_n_p1_Martinez

Referencias:

  • Allegretto, W., Huang, Y.X., A picone's identity for the p-lapacian and applications (1998) Nonlinear Anal. TM&A, 32 (7), pp. 819-830
  • Anane, A., Simplicité et isolation de la premiere valeur propre du p-laplacien avec poids (1987) C. R. Acad. Sci. Paris, 305 (1), pp. 725-728
  • Arcoya, D., Gámez, J., Bifurcation Theory and related problems: Anti-maximun principle and resonance (2001) Comm. Partial Differential Equations, 26 (9-10), pp. 1879-1911
  • Arcoya, D., Orsina, Landesman-Lazer conditions and quasilinear elliptic equations (1997) Nonlinear Anal.-TMA, 28, pp. 1623-1632
  • Babuska, I., Osborn, J., Eigenvalue problems (1991) Handbook of Numer. Anal., 2. , North-Holland
  • St. Cîrstea, F.-C., Radulescu, V., Existence and non-existence results for a quasilinear problem with nonlinear boundary conditions (2000) J. Math. Anal. Appl., 244, pp. 169-183
  • Chipot, M., Shafrir, I., Fila, M., On the solutions to some elliptic equations with nonlinear boundary conditions (1996) Adv. Differential Equations, 1 (1), pp. 91-110
  • Chipot, M., Chlebík, M., Fila, M., Shafrir, I., Existence of positive solutions of a semilinear elliptic equation in ℝN+ with a nonlinear boundary condition (1998) J. Math. Anal. Appl., 223, pp. 429-471
  • Drábek, P., Robinson, S.B., Resonance Problem for the p-Laplacian (1999) J. Funct. Anal., 169, pp. 189-200
  • Escobar, J.F., Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature (1992) Ann. of Math. (2), 136, pp. 1-50
  • Fernández Bonder, J., Rossi, J.D., Existence results for the p-Laplacian with nonlinear boundary conditions (2001) J. Math. Anal. Appl., 263, pp. 195-223
  • Flores, C., Del Pino, M., Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains (2001) Comm. Partial Differential Equations, 26 (11-12), pp. 2189-2210
  • Garcia-Azorero, J., Peral, I., Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term (1991) Trans. Amer. Math. Soc., 323 (2), pp. 877-895
  • Garcia-Azorero, J., Peral, I., Existence and non-uniqueness for the p-Laplacian: Nonlinear eigenvalues (1987) Comm. Partial Diffrential Equations, 12, pp. 1389-1430
  • Lieberman, G., Boundary regularity for solutions of degenerate elliptic equations (1988) Nonlinear Analysis T.M.A., 12 (11), pp. 1203-1219
  • Lindqvist, P., On the equation pu + |u|p-2u = 0 (1990) Procc. A.M.S., 109 (1), pp. 157-164
  • Martinez, S., Rossi, J.D., Isolation and simplicity for the first eigenvalue of the p-laplacian with a nonlinear boundary condition (2002) Abstr. Appl. Anal., 7 (5), pp. 287-293
  • Pflüger, K., Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition (1998) Electron. J. Differential Equations, 10, pp. 1-13
  • Struwe, M., (2000) Variational Methods: Aplications to Nonlinear Partial Diferential Equations and Hamiltonian Systems, , Springer, Berlin
  • Vazquez, J.L., A strong maximum principle for some quasilinear elliptic equations (1984) Appl. Math. Optim., pp. 191-202

Citas:

---------- APA ----------
Martínez, S. & Rossi, J.D. (2003) . Weak solutions for the p-Laplacian with a nonlinear boundary condition at resonance. Electronic Journal of Differential Equations, 2003, 1-14.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10726691_v2003_n_p1_Martinez [ ]
---------- CHICAGO ----------
Martínez, S., Rossi, J.D. "Weak solutions for the p-Laplacian with a nonlinear boundary condition at resonance" . Electronic Journal of Differential Equations 2003 (2003) : 1-14.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10726691_v2003_n_p1_Martinez [ ]
---------- MLA ----------
Martínez, S., Rossi, J.D. "Weak solutions for the p-Laplacian with a nonlinear boundary condition at resonance" . Electronic Journal of Differential Equations, vol. 2003, 2003, pp. 1-14.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10726691_v2003_n_p1_Martinez [ ]
---------- VANCOUVER ----------
Martínez, S., Rossi, J.D. Weak solutions for the p-Laplacian with a nonlinear boundary condition at resonance. Electron. J. Differ. Equ. 2003;2003:1-14.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10726691_v2003_n_p1_Martinez [ ]