Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Double Traveling Salesman Problem with Multiple Stacks is a vehicle routing problem in which pickups and deliveries must be performed in two independent networks. The items are stored in stacks and repacking is not allowed. Given a pickup and a delivery tour, the problem of checking if there exists a valid distribution of items into s stacks of size h that is consistent with the given tours, is known as Pickup and Delivery Tour Combination (PDTC) problem. In the paper, weshow that the PDTC problem canbesolved in polynomial time when the number of stacks s is fixed but the size of each stack is not. We build upon the equivalence between the PDTC problem and the bounded coloring(BC) problemonpermutation graphs: for the latter problem, s is the number of colors and h is the number of vertices that can get a same color. We show that the BC problem can be solved in polynomial time when s is a fixed constant on co-comparability graphs, a superclass of permutation graphs. To the contrary, the BC problem is known to be hard on permutation graphs when h ≥ 6 is a fixed constant, but s is unbounded. © 2011 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem
Autor:Bonomo, F.; Mattia, S.; Oriolo, G.
Filiación:IMAS-CONICET and Departamento de Computación, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina
Technische Universität Dortmund, Fakultät für Mathematik, Dortmund, Germany
Università di Roma Tor Vergata, Dipartimento di Informatica, Sistemi e Produzione, Roma, Italy
Palabras clave:Bounded coloring; Capacitated coloring; Equitable coloring; Permutation graphs; Scheduling problems; Thinness; Coloring; Graphic methods; Pickups; Polynomial approximation; Vehicle routing; Bounded coloring; Equitable coloring; Permutation graph; Scheduling problem; Thinness; Traveling salesman problem
Año:2011
Volumen:412
Número:45
Página de inicio:6261
Página de fin:6268
DOI: http://dx.doi.org/10.1016/j.tcs.2011.07.012
Título revista:Theoretical Computer Science
Título revista abreviado:Theor Comput Sci
ISSN:03043975
CODEN:TCSCD
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_03043975_v412_n45_p6261_Bonomo.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03043975_v412_n45_p6261_Bonomo

Referencias:

  • Alon, N., A note on the decomposition of graphs into isomorphic matchings (1983) Acta Mathematica Hungarica, 42, pp. 221-223
  • Baker, B.S., Coffman, E.G., Mutual exclusion scheduling (1996) Theoretical Computer Science, 162, pp. 225-243
  • Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J., (2001) Scheduling Computer and Manufacturing Processes, , second ed, Springer, Berlin
  • Bodlaender, H.L., Fomin, F.V., Equitable colorings of bounded treewidth graphs (2005) Theoretical Computer Science, 349 (1), pp. 22-30
  • Bodlaender, H.L., Jansen, K., Onthe complexity of scheduling in compatible jobs withunit-times (1993) Lecture Notes in Computer Science, 711, pp. 291-300
  • Bodlaender, H.L., Jansen, K., Restrictions of graph partition problems, Part I (1995) Theoretical Computer Science, 148, pp. 93-109
  • Brandstädt, A., On improved time bounds for permutation graph problems (1992) Lecture Notes in Computer Science, 657, pp. 1-10
  • Casazza, M., Ceselli, A., Nunkesser, M., Efficient algorithms for the double traveling salesman problem with multiple stacks (2009) Proceedings of the 8th Cologne-twente Workshop on Graphs and Combinatorial Optimization, pp. 7-10. , Paris S. Cafieri, A. Mucherino, G. Nannicini, F. Tarissan, and L. Liberti, (Eds.)
  • Chen, B.-L., Ko, M.-T., Lih, K.-W., Equitable and m-bounded coloring of split graphs (1996) Lecture Notes in Computer Science, 1120, pp. 1-5
  • Cohen, E., Tarsi, M., NP-completeness of graph decomposition problems (1991) Journal of Complexity, 7 (2), pp. 200-212
  • Dushnik, B., Miller, E., Partially ordered sets (1941) American Journal of Mathematics, 63, pp. 600-610
  • Felipe, A., Ortuño, M.T., Tirado, G., The double traveling salesman problem with multiple stacks: A variable neighborhood search approach (2009) Computers & Operations Research, 36 (11), pp. 2983-2993
  • Felipe, A., Ortuño, M.T., Tirado, G., New neighborhood structures for the double traveling Salesman problem with multiple stacks (2009) Top, 17, pp. 190-213
  • Gilmore, P.C., Hoffman, A.J., A characterization of comparability graphs and of interval graphs (1964) Canadian Journal of Mathematics, 16, pp. 539-548
  • Golumbic, M., The complexity of comparability graph recognition and coloring (1977) Computing, 18, pp. 199-208
  • Hajnal, A., Szemerédi, E., Proof of a conjectureof P. Erdos (1970) Combinatorial Theory and its Applications, 2, pp. 601-623. , P. Erdos, A. Rényi, V. Sós (Eds.) North-Holland, Amsterdam
  • Hansen, P., Hertz, A., Kuplinsky, J., Bounded vertex colorings of graphs (1993) Discrete Mathematics, 111, pp. 305-312
  • Irani, S., Leung, V., Scheduling with conflicts, and applications to traffic signal control (1996) Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 85-94
  • Jansen, K., The mutual exclusion scheduling problem for permutation and comparability graphs (2003) Information and Computation, 180, pp. 71-81
  • Jarvis, M., Zhou, B., Bounded vertex coloring of trees (2001) Discrete Mathematics, 232, pp. 145-151
  • Kaller, D., Gupta, A., Shermer, T., The Xt-coloring problem (1995) Lecture Notes in Computer Science, 900, pp. 409-420
  • Kitagawa, F., Ikeda, H., An existential problem of a weight-controlled subset and its application to school timetable construction (1988) Discrete Mathematics, 72, pp. 195-211
  • Krarup, J., De Werra, D., Chromatic optimisation: Limitations, objectives, uses, references (1982) European Journal of Operational Research, 11, pp. 1-19
  • Lonc, Z., On complexity of some chain and antichain partition problems (1992) Lecture Notes in Computer Science, 570, pp. 97-104
  • Lusby, R., Larsen, J., Ehrgott, M., Ryan, D., An exact method for the double TSP with multiple stacks (2009) Tech. Report 2.2009, Department of Management Engineering, , Technical University of Denmark
  • Mannino, C., Oriolo, G., Ricci, F., Chandran, S., The stable set problem and the thinness of a graph (2007) Operations Research Letters, 35, pp. 1-9
  • McConnell, R.M., Spinrad, J.P., Linear-time transitive orientation (1997) Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 19-25
  • Meyer, W., Equitable coloring (1973) The American Mathematical Monthly, 80 (8), pp. 920-922
  • Petersen, H.L., Archetti, C., Speranza, M.G., Exact solutions to the double travelling salesman problem with multiple stacks (2010) Networks, 56 (4), pp. 229-243
  • Petersen, H.L., Madsen, O.B.G., The double travelling salesman problem with multiple stacks-formulation and heuristic solution approaches (2009) European Journal of Operational Research, 198 (1), pp. 139-147
  • Pnueli, A., Lempel, A., Even, S., Transitive orientation of graphs and identification of permutation graphs (1971) Canadian Journal of Mathematics, 23, pp. 160-175
  • Smith, B.F., Bjørstad, P.E., Gropp, W.D., (1996) Domain Decomposition. Parallel Multilevel Methods for Elliptic Partial Differential Equations, , Cambridge University Press, Cambridge

Citas:

---------- APA ----------
Bonomo, F., Mattia, S. & Oriolo, G. (2011) . Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem. Theoretical Computer Science, 412(45), 6261-6268.
http://dx.doi.org/10.1016/j.tcs.2011.07.012
---------- CHICAGO ----------
Bonomo, F., Mattia, S., Oriolo, G. "Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem" . Theoretical Computer Science 412, no. 45 (2011) : 6261-6268.
http://dx.doi.org/10.1016/j.tcs.2011.07.012
---------- MLA ----------
Bonomo, F., Mattia, S., Oriolo, G. "Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem" . Theoretical Computer Science, vol. 412, no. 45, 2011, pp. 6261-6268.
http://dx.doi.org/10.1016/j.tcs.2011.07.012
---------- VANCOUVER ----------
Bonomo, F., Mattia, S., Oriolo, G. Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem. Theor Comput Sci. 2011;412(45):6261-6268.
http://dx.doi.org/10.1016/j.tcs.2011.07.012