Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Synthetic Aperture Radar (SAR) images are dificult to segment due to their characteristic noise, called speckle, which is multiplicative, non-gaussian and has a low signal to noise ratio. In this work we use the GH distribution to model the SAR data from the different regions of the image. We estimate their statistical parameters and use them in a segmentation algorithm based on multiregion competition. We then apply this algorithm to segment simulated as well as real SAR images and evaluate the accuracy of the segmentation results obtained. © 2009 Springer-Verlag Berlin Heidelberg.

Registro:

Documento: Artículo
Título:SAR image segmentation using level sets and region competition under the GH model
Autor:Buemi, M.E.; Goussies, N.; Jacobo, J.; Mejail, M.
Ciudad:Guadalajara, Jalisco
Filiación:Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Ciudad de Buenos Aires, Argentina
Palabras clave:GHdistribution; Level set; Multiregion competition; SAR images; Segmentation; GHdistribution; Level Set; Multiregion competition; SAR Images; Segmentation; Algorithms; Competition; Computer applications; Computer vision; Imaging systems; Signal to noise ratio; Synthetic aperture radar; Image segmentation
Año:2009
Volumen:5856 LNCS
Página de inicio:153
Página de fin:160
DOI: http://dx.doi.org/10.1007/978-3-642-10268-4_18
Título revista:14th Iberoamerican Conference on Pattern Recognition, CIARP 2009
Título revista abreviado:Lect. Notes Comput. Sci.
ISSN:03029743
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_03029743_v5856LNCS_n_p153_Buemi.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v5856LNCS_n_p153_Buemi

Referencias:

  • Frery, A.C., Müller, H.-J., Yanasse, C.C.F., Sant'anna, S.J.S., A model for extremely heterogeneous clutter (1997) IEEE Transactions on Geoscience and Remote Sensing, 35 (3), pp. 648-659
  • Mejail, M.E., Frery, A.C., Jacobo-Berlles, J., Bustos, O.H., Approximation of distributions for SAR images: Proposal, evaluation and practical consequences (2001) Latin American Applied Research, 31, pp. 83-92
  • Zhu, S.C., Yuille, A., Region competition: Unifying snakes, region growing, and bayes/mdl for multiband image segmentation (1996) IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, pp. 884-900
  • Sethian, J.A., (2007) Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, , Cambridge University Press, Cambridge
  • Frery, A.C., Correia, A., Renno, C.D., Freitas, C.D.C., Jacobo-Berlles, J., Vasconcellos, K.L.P., Mejail, M., Sant'anna, S.J.S., Models for synthetic aperture radarimage analysis (1999) Resenhas (IME-USP), 4, pp. 45-77
  • Jacobo-Berlles, J., Mejail, M., Frery, A.C., The ga0 distribution as the true model for sar images (1999) SIBGRAPI 1999: Proceedings of the XII Brazilian Symposium on Computer Graphics and Image Processing, pp. 327-336. , Washington, DC, USA. IEEE Computer Society, Los Alamitos
  • Mejail, M., Frery, A.C., Jacobo-Berlles, J., Kornblit, F., Approximation of the ka distribution by the ga (1999) Second Latinoamerican Seminar on Radar Remote Sensing: Image Processing Techniques, pp. 29-35
  • Mejail, M.E., Jacobo-Berlles, J., Frery, A.C., Bustos, O.H., Classification of sar images using a general and tractable multiplicative model (2003) International Journal of Remote Sensing, 24 (18), pp. 3565-3582
  • Quartulli, M., Datcu, M., Stochastic geometrical modelling for built-up area understanding from a single SAR intensity image with meter resolution (2004) IEEE Transactions on Geoscience and Remote Sensing, 42 (9), pp. 1996-2003
  • Vese, L.A., Chan, T.F., A multiphase level set framework for image segmentation using the mumford and shah model (2002) International Journal of Computer Vision, 50, pp. 271-293
  • Chung, G., Vese, L., Energy minimization based segmentation and denoising using a multilayer level set approach (2005) Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 439-455
  • Brox, T., Weickert, J., Level set segmentation with multiple regions level set segmentation with multiple regions (2006) IEEE Transactions on Image Processing, 15 (10), pp. 3213-3218
  • Mansouri, A.R., Mitiche, A., Vazquez, C., Multiregion competition: A level set extension of region competition to multiple region image partitioning (2006) Computer Vision and Image Understanding, 101 (3), pp. 137-150
  • Chan, T.F., Vese, L.A., Active contours without edges (2001) IEEE Transactions on Image Processing, 10 (2), pp. 266-277
  • Ayed, I.B., Mitiche, A., Belhadj, Z., Multiregion level-set partitioning of synthetic aperture radar images (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence, 27 (5), pp. 793-800A4 - International Association for Pattern Recogntion (IAPR); Mex. Assoc. Comput. Vis., Neurocomputing Rob. (MACVNR); Cuban Association for Pattern Recogntion (ACRP); Chilean Association for Pattern Recogntion (AChiRP); Spec. Interest Group Braz. Comput. Soc. (SIGPR-SBC)

Citas:

---------- APA ----------
Buemi, M.E., Goussies, N., Jacobo, J. & Mejail, M. (2009) . SAR image segmentation using level sets and region competition under the GH model. 14th Iberoamerican Conference on Pattern Recognition, CIARP 2009, 5856 LNCS, 153-160.
http://dx.doi.org/10.1007/978-3-642-10268-4_18
---------- CHICAGO ----------
Buemi, M.E., Goussies, N., Jacobo, J., Mejail, M. "SAR image segmentation using level sets and region competition under the GH model" . 14th Iberoamerican Conference on Pattern Recognition, CIARP 2009 5856 LNCS (2009) : 153-160.
http://dx.doi.org/10.1007/978-3-642-10268-4_18
---------- MLA ----------
Buemi, M.E., Goussies, N., Jacobo, J., Mejail, M. "SAR image segmentation using level sets and region competition under the GH model" . 14th Iberoamerican Conference on Pattern Recognition, CIARP 2009, vol. 5856 LNCS, 2009, pp. 153-160.
http://dx.doi.org/10.1007/978-3-642-10268-4_18
---------- VANCOUVER ----------
Buemi, M.E., Goussies, N., Jacobo, J., Mejail, M. SAR image segmentation using level sets and region competition under the GH model. Lect. Notes Comput. Sci. 2009;5856 LNCS:153-160.
http://dx.doi.org/10.1007/978-3-642-10268-4_18