Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Traveling Deliveryman Problem is a generalization of the Minimum Cost Hamiltonian Path Problem where the starting vertex of the path, i.e. a depot vertex, is fixed in advance and the cost associated with a Hamiltonian path equals the sum of the costs for the layers of paths (along the Hamiltonian path) going from the depot vertex to each of the remaining vertices. In this paper, we propose a new Integer Programming formulation for the problem and computationally evaluate the strength of its Linear Programming relaxation. Computational results are also presented for a cutting plane algorithm that uses a number of valid inequalities associated with the proposed formulation. Some of these inequalities are shown to be facet defining for the convex hull of feasible solutions to that formulation. These inequalities proved very effective when used to reinforce Linear Programming relaxation bounds, at the nodes of a Branch and Bound enumeration tree. © 2008 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:A new formulation for the Traveling Deliveryman Problem
Autor:Méndez-Díaz, I.; Zabala, P.; Lucena, A.
Filiación:Depto. de Computación, FCEyN, Universidad de Buenos Aires, Argentina
Depto. de Administração, Universidade Federal do Rio de Janeiro, Brazil
Palabras clave:Branch-and-cut algorithms; Integer programming; Traveling deliveryman problem; Dynamic programming; Hamiltonians; Integer programming; Linearization; Meats; Particle size analysis; Branch-and-Bound; Branch-and-cut algorithms; Computational results; Convex hulls; Cutting plane algorithms; Enumeration trees; Feasible solutions; Hamiltonian path problems; Hamiltonian paths; Integer programming formulations; Linear programming relaxations; Minimum costs; Traveling deliveryman problem; Valid inequalities; Linear programming
Año:2008
Volumen:156
Número:17
Página de inicio:3223
Página de fin:3237
DOI: http://dx.doi.org/10.1016/j.dam.2008.05.009
Título revista:Discrete Applied Mathematics
Título revista abreviado:Discrete Appl Math
ISSN:0166218X
CODEN:DAMAD
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_0166218X_v156_n17_p3223_MendezDiaz.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v156_n17_p3223_MendezDiaz

Referencias:

  • Afrati, F., Cosmadakis, S., Papadimitriou, C., Papageorgiou, G., Papakostantinou, N., The complexity of the travelling repairman problem (1986) RAIRO Informatique Theorique et Applications, 20, pp. 79-87
  • A. Archer, D. Williamson, Faster approximation algorithms for the minimum latency problem, in: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, 2003; S. Arora, G. Karakostas, Approximation schemes for minimum latency problem, in: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, Atlanta, 1993, pp. 688-693; G. Ausiello, S. Leonardi, A. Marchetti-Spaccamela, On salesmen, repairmen, spiders and other traveling agents, in: Proc. of the Italian Conference on Algorithms and Complexity, 2000, pp. 1-16; A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, M. Sudan, The minimum latency problem, in: Proceedings of 26th ACM Symp. on Theory of Computing, STOC, 1994, pp. 163-171; Chvatal, V., Hamiltonian cycles (1985) The Traveling Salesman Problem - A Guided Tour of Combinatorial Optimization, pp. 403-429. , Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G., and Shmoys D.B. (Eds), Wiley & Sons, Chichester
  • CPLEX Linear Optimization 8.1 with Mixed Integer & Barrier Solvers, ILOG, 1997-1998; C.A. van Eijl, A polyhedral approach to the delivery man problem, Memorandum COSOR 95-19, Eindhoven University of Technology, 1995; Feuerstein, E., Stougie, L., On-line single-server dial-a-ride problems (2001) Theoretical Computer Science, 268 (1), pp. 91-105
  • Fischetti, M., Laporte, G., Martello, S., The delivery man problem and cumulative matroids (1993) Operations Research, 41 (6), pp. 1055-1064
  • A. García, P. Jodrá, J. Tejel, A note on the travelling repairman problem, Pre-publications del seminario mathematico 3, University of Zaragoza, Spain, 2001; Goemans, M., Kleinberg, J., An improved approximation ratio for the minimum latency problem (1998) Mathematical Programming, 82, pp. 111-124
  • Goemans, M.X., Williamson, D.P., A general approximation technique for constrained forest problems (1995) SIAM Journal on Computing, 24, pp. 296-317
  • Grötschel, M., Jünger, M., Reinelt, G., Facets of the linear ordering polytope (1985) Mathematical Programming, 69, pp. 43-60
  • E. Koutsoupias, C.H. Papadimitriou, M. Yannakakis, Searching a Fixed graph, ICALP, 1996, pp. 280-289; Krumke, S.O., de Paepe, W.E., Poensgen, D., Stougie, L., News from the online traveling repairman (2003) Theoretical Computer Science, 295 (1-3), pp. 279-294
  • Lucena, A., Time-dependent traveling salesman problem - The deliveryman case (1990) Networks, 20, pp. 753-763
  • Picard, J., Queyranne, M., The time-dependent traveling salesman problem and its application to the tardiness problem in one-machine scheduling (1978) Operations Research, 26 (1), pp. 86-110
  • Sahni, S., Gonzalez, T., P-complete approximation problems (1976) Journal of the Association for Computing Machinery, 23, pp. 555-565
  • Simchi-Levi, D., Berman, O., Minimizing the total flow time of n jobs on a network (1991) IIE Transactions, 23, pp. 236-244
  • R. Sitters, The minimum latency problem is NP-hard for weighted trees, in: Proceedings of the 9th Conference on Integer Programming and Combinatorial Optimization, 2002, pp. 230-239; Vander Wiel, R.J., Sahinidis, N.V., Heuristic bounds and test problem generation for the time-dependent traveling salesman problem (1995) Transportation Science, 29 (2), pp. 167-183
  • Wu, B.Y., Huang, Z., Zhan, F., Exact algorithms for the minimum latency problem (2004) Information Processing Letters, 92 (6), pp. 303-309
  • Webb, I.R., Depth-first solutions for the deliveryman problem on tree-like networks: An evaluation using a permutation (2002) LNCS, 2368, pp. 190-199. , SWAT 2002. Schmidt (Ed)

Citas:

---------- APA ----------
Méndez-Díaz, I., Zabala, P. & Lucena, A. (2008) . A new formulation for the Traveling Deliveryman Problem. Discrete Applied Mathematics, 156(17), 3223-3237.
http://dx.doi.org/10.1016/j.dam.2008.05.009
---------- CHICAGO ----------
Méndez-Díaz, I., Zabala, P., Lucena, A. "A new formulation for the Traveling Deliveryman Problem" . Discrete Applied Mathematics 156, no. 17 (2008) : 3223-3237.
http://dx.doi.org/10.1016/j.dam.2008.05.009
---------- MLA ----------
Méndez-Díaz, I., Zabala, P., Lucena, A. "A new formulation for the Traveling Deliveryman Problem" . Discrete Applied Mathematics, vol. 156, no. 17, 2008, pp. 3223-3237.
http://dx.doi.org/10.1016/j.dam.2008.05.009
---------- VANCOUVER ----------
Méndez-Díaz, I., Zabala, P., Lucena, A. A new formulation for the Traveling Deliveryman Problem. Discrete Appl Math. 2008;156(17):3223-3237.
http://dx.doi.org/10.1016/j.dam.2008.05.009