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a b s t r a c t

The Traveling Deliveryman Problem is a generalization of the Minimum Cost Hamiltonian
Path Problem where the starting vertex of the path, i.e. a depot vertex, is fixed in advance
and the cost associated with a Hamiltonian path equals the sum of the costs for the
layers of paths (along the Hamiltonian path) going from the depot vertex to each of the
remaining vertices. In this paper, we propose a new Integer Programming formulation
for the problem and computationally evaluate the strength of its Linear Programming
relaxation. Computational results are also presented for a cutting plane algorithm that
uses a number of valid inequalities associated with the proposed formulation. Some of
these inequalities are shown to be facet defining for the convex hull of feasible solutions
to that formulation. These inequalities proved very effective when used to reinforce Linear
Programming relaxation bounds, at the nodes of a Branch and Bound enumeration tree.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Given a vehicle depot and a number of geographically dispersed customers, assume that direct travel times are known
for every pair of locations involved. The Traveling Deliveryman Problem (TDP) is to find a path, initiated at the depot and
visiting every customer exactly once, such that the sum of the times required to reach every customer, along the path, is
a minimum. As such, an optimal TDP solution also minimizes, under the constraints imposed, the average time to reach a
customer. Therefore, applications of TDP frequently arise in delivery situations where some kind of fairness criteria (for the
visiting of clients) must be enforced.
An example of a practical application of TDP is the home delivery of pizzas [10]. Typically, various delivery orders are

put together and one wishes to minimize the average arrival time at a customer. Another application is found in the area of
computer networks where one wishes to find information stored somewhere in the network [4,15]. Assume that network
locations have equal probability of containing the desired information. One thus wishes to design a visiting path for the
locations such that the average time to reach each of them is minimized. Additional applications of the problem could be
found, among others, in disk-head scheduling [5] and in the routing of automated guided vehicles through cells in a flexible
manufacturing system [20]. In the literature, TDP is also known as The Traveling Repairman Problem (TRP) [1,4,11] and the
Minimum Latency Problem (MLP) [2,3,5,12,21].
Various Combinatorial Optimization problems seek permutations of given sets of items to minimize associated objective

functions. Many of these could be cast in terms of a complete digraph where vertices represent items and arcs indicate the
possibilities of having two items (i.e. the endpoints of a given arc) placed in immediately subsequent permutation positions.
In what follows, let us assume that the item occupying the first permutation position is always known in advance. This is
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done without any loss of generality since the introduction of an artificial item, together with some conveniently defined
associated costs, suffices to redefine a general TDP, where the starting vertex is not fixed in advance.
Depending on the objective function involved, some well known problems could easily be identified within the

framework suggested above. Themostwell known of these arisewhen the objective function only involves terms associated
with the cost of placing pairs of items in immediately subsequent positions of the permutation, say a cost cij is incurred
whenever item j immediately follows item i in the permutation. The Hamiltonian Path Problem (HPP) [6] thus results. A
generalization of HPP arises when the cost of placing items i and j, say in positions k and k + 1 of a permutation, is given
by (n − k)cij, for cij as defined above. Such a problem is precisely TDP. It should be noticed that the HPP objective function
is biased towards the vehicle (say, one wishes to minimize the total time required to visit all customers) while the TDP
objective function is biased towards customers (one wishes to minimize the sum of arrival times at each customer).
TDP could be formally described as follows. Let D = (V , A) be a complete digraph with a set V = {v0, v1, . . . , vn} of

vertices and a set A of arcs. Assume that costs {cij ≥ 0 : (vi, vj) ∈ A} are associated with the arcs of D and that v0 is a special
vertex representing a depot. Feasible TDP solutions are given byHamiltonian paths ofD starting at the depot and are denoted
TDP paths. Given a TDP path, an arc pointing outwards of v0 must occupy the first of the n available path positions. The arcs
that follow, along that path, sequentially occupy positions 2 to n. Each arc (vi, vj) in a TDP path contributes (n− k+ 1) cij to
the cost of the path, where k is the corresponding path position of the arc. Alternatively, one may interpret the cost of a TDP
path as the sum of the costs for the layers of paths (along the underlying Hamiltonian path) going from the depot vertex to
each of the remaining vertices in the problem. TDP is defined as the problem of finding a least cost TDP path.
TDP is N P -hard for general metrics [19] and remains so even when the metric space is induced by a tree [21] (note

that HPP is trivial, in this case). If the metric is defined over points (vertices) placed on a line segment, a O(n2) Dynamic
Programming exact solution algorithm exists for the problem [1]. For that particular case, a linear time algorithm was later
suggested in [11].
In spite of the close links between HPP and TDP, the two problems are, structurally speaking, quite different from each

other. For instance, a small variation on the cost of a given arc tends to have amarked global impact on TDP optimal solutions.
Contrary to that, the corresponding impact on HPP is typically restricted to a small neighborhood of the solution. However,
the two problems could be seen as special cases of the Time-Dependent Traveling Salesman Problem (TDTSP) [18]. For TDTSP,
a general cost cijk is incurred whenever items i and j respectively appear in positions k and k + 1 of a Hamiltonian tour. As
pointed out before, for that situation, cijk = cij for HPP while cijk = (n− k+ 1)cij for TDP.
Exact solution algorithms for TDP could be found, among others, in Fischetti et al. [10], Lucena [17], and van Eijl [8].

In the literature, the largest TDP instance solved to proven optimality does not exceed 60 customers [10]. Approximation
algorithms for the problem are found in [2,3,5,12,13]. Various heuristic [22,24] and online [9,16] algorithms for the problem
have also been proposed.
In this paper, a new linear Integer Programming (IP) formulation is introduced for TDP and its Linear Programming

(LP) relaxation is computationally compared with its counterparts in Fischetti, Laporte and Martello [10] and van Eijl [8].
Additionally, a number of inequalities that are valid for our formulation are also described. Some of these are shown to be
facet defining for the polytope given by the convex hull of feasible solutions to our formulation. Computational results are
presented for a cutting plane algorithmbased on our reinforced formulation. That algorithm is then used to reinforce bounds
on the nodes of a Branch and Bound enumeration tree.
This paper differs from TDP papers in the literature in that it concentrates on polyhedral solution approaches to the

problem. To the best of our knowledge, this is the very first time such an approach is applied to TDP.
This paper is organized as follows. In Section 2, a new TDP formulation is proposed. In Section 3, that formulation

is computationally compared with two TDP formulations found in the literature. In Section 4, some polyhedral results
are described for the formulation introduced here. In Section 5, a cutting plane algorithm, based on these inequalities, is
computationally tested and is embedded into the nodes of a Branch and Bound enumeration tree. Finally, the paper is closed
in Section 6, with a few remarks and suggestions for future work.

2. A new formulation to TDP

The formulation that follows, exploits connections between TDP and the Linear Ordering Problem (LOP) [14].
A linear ordering (or a permutation) of the n+ 1 elements of a finite set N is a bijective mapping π : {0, 1, . . . , n} → N .

For an element i ∈ N and an ordering π , the position of i in π is given by π−1(i). The ordering cost d(π) is computed from
a set of precedence costs, {cij : i, j ∈ N, i 6= j}. Every pair of distinct elements i, j ∈ N must contribute with either cij or else
cji to d(π). If π−1(i) < π−1(j) then cij is incurred. Otherwise, cji is incurred. The Linear Ordering Problem (LOP) is to find an
ordering π of N with as large a d(π) as possible.
LOP can be cast in graph theoretical terms by assuming the elements of N to be the vertices of a complete digraph

D = (V , A). Accordingly, A = {(vi, vj) : i, j ∈ N, i 6= j} is defined as the arc set and the precedence costs introduced
above are thus taken to be arc costs. A subgraph D′ = (V , A′), A′ ⊆ A, denotes a tournament if, for every pair of distinct
nodes vi, vj ∈ V , exactly one of the arcs, (vi, vj) or (vj, vi), is contained in A′. An acyclic tournament D′ with the largest sum
of arc costs implies an optimal LOP solution to N .
Let xij be a binary 0–1 variable that takes a value of 1 if vertex vi appears prior to vertex vj in the TDP path, taking a value

of 0, otherwise. Additionally, for every vertex vk ∈ V , a continuous variable f kij assumes a value of 1 if arc (vi, vj) is used to
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go from v0 to vk in the solution path. One should notice that variables f k0j may be conveniently replaced with variables f
j
0j.

That applies since the very first arc in the TDP path must be used in any subpath going from v0 to vk, where vk ∈ V\{v0}. A
TDP formulation,MR, is thus given by

min
n∑
i=1

n∑
j=1,j6=i

cij
n∑

k=1,k6=i

f kij + n
n∑
i=1

c0if i0i

s.t. xij + xji = 1 i, j = 1, . . . , n, i < j (1)

xij + xjk + xki ≤ 2 i, j, k = 1, . . . , n, i < j < k (2)
xik + xkj + xji ≤ 2 i, j, k = 1, . . . , n, i < j < k

xjk =
n∑

i=1,i6=j,k

f kij + f
j
0j j, k = 1, . . . , n, j 6= k (3)

xjk =
n∑

i=1,i6=j

f kji j, k = 1, . . . , n, j 6= k (4)

n∑
i=1

f i0i = 1 (5)

n∑
k=1 k6=j

xjk −
n∑
k=1 k6=j,i

xik ≤ f
j
ij − nxij + n− 1 i, j = 1, . . . , n, i 6= j (6)

f iki + xij − f
j
ki ≤ 1 i, j, k = 1, . . . , n, i 6= j 6= k (7)

xij ∈ {0, 1} i, j = 1, . . . , n, i 6= j

0 ≤ f kij ≤ 1 i, j, k = 1, . . . , n, i 6= j, k

0 ≤ f i0i ≤ 1 i = 1, . . . , n.

The above formulation contains n(n2 − n + 1) variables and n(n−1)(8n+5)6 + 1 constraints. Constraints (1) and (2) define
the set of linear orderings. Constraint (5) ensures that only one arc pointing outwards of v0 exists. If vertex vi is visited in
the TDP path immediately before vertex vj, then constraint (6) ensures that arc (vi, vj)must be used. Inequalities (7) impose
that the arc pointing inwards of vi must be used to reach vj if vi is visited prior to vj. Finally, if vj is not visited prior to vk,
constraints (3) and (4) impose that none of the arcs (vi, vj) and (vj, vi) is used to reach vk.
It should be pointed out that integrality of variables xij allows the integrality of variables f

j
ij, f

k
ij , f

i
0i to be relaxed. Con-

straints (6) ensure that f jij = 1 if xij = 1 and vertex vi is the predecessor of vertex vj (since
∑n
k=1,k6=j xjk−

∑n
k=1,k6=i,j xik = 0).

Otherwise, f jij = 0, from constraint (4). Similar arguments apply for f
k
ij and f

i
0i in relation, respectively, with constraints (3)

and (7). Finally, given that one is faced with a minimization problem, if constraints (3) and (4) are omitted from the formu-
lation, theywill be implicitly satisfied at an optimal solution. However, in our computational experiments, these constraints
proved useful in cutting CPU times down and are therefore kept in the formulation.

3. Linear Programming relaxation bounds

The most recent TDP formulations to appear in the literature are found in Fischetti, Laporte and Martello [10] and in van
Eijl [8]. These formulations address the oriented (or Hamiltonian circuit) version of the problem and are computationally
compared here with our own formulation, which is also oriented.
Randomly generated test instances, grouped in sets named A,D and S, respectively, are used in the experiments. Instances

in set D are generated by drawing points in a 100 × 100 square from the uniform distribution. These points are then
interpreted as vertices of a graph where arc costs are given by Euclidian distances (rounded to the nearest integer) between
corresponding end points. Instances in set S are generated by drawing arc costs cij = cji from uniform distribution in the
range [1, 100], for every pair of distinct vertices i, j ∈ V . Instances in sets D and S therefore involve symmetric arc costs.
Contrary to that, instances in set A involve asymmetric arc costs drawn from uniform distribution in the range [1, 100]. For
either set, A, D and S, five instances are generated for every value of n considered, with 20 ≤ n ≤ 40.
For our TDP formulation, the use of constraints (3) and (4) allow variables x to be dropped. However, the resulting

formulation proved far too dense, thus implying a loss of efficiency. Another variable elimination possibility results from the
use of constraints (1) and implies a decrease fromn(n−1) ton(n−1)/2 in thenumber of variables x. In this case,mixed results
were obtained. The strategy proved better than the previous one. However, in spite of the polynomial number of constraints
involved, CPU time demands (for solving the resulting LP relaxations) proved excessive even for medium size instances. For
that reason, we ended up settling for an initial TDP relaxation that involves only the equality constraints in (1)–(7). In doing
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Table 1
Comparison of LP relaxation’s gaps

n MR FLM Eijl
Time %Gap Time %Gap Time %Gap

D-20 0.09 17.58 0.03 26.20 0.03 90.36
D-22 0.11 22.75 0.03 35.57 0.04 91.43
D-24 0.17 22.97 0.05 33.64 0.05 92.47
D-26 0.22 22.12 0.05 34.90 0.06 93.02
D-28 0.40 23.29 0.06 35.79 0.07 93.62
D-30 0.48 21.78 0.07 32.53 0.09 93.78
D-35 0.91 24.58 0.12 38.87 0.14 94.63
D-40 2.01 26.20 0.21 41.02 0.18 95.38

Average 0.55 22.66 0.08 34.81 0.08 93.09

S-20 0.08 35.84 0.02 59.14 0.03 88.56
S-22 0.13 28.03 0.03 41.86 0.03 93.35
S-24 0.19 43.67 0.05 68.40 0.05 91.08
S-26 0.27 36.52 0.06 56.97 0.06 80.86
S-28 0.42 38.77 0.07 59.34 0.09 92.16
S-30 0.58 38.76 0.09 59.59 0.12 93.42
S-35 1.04 46.40 0.13 69.78 0.16 93.84
S-40 2.71 44.84 0.19 66.71 0.23 94.97

Average 0.68 39.10 0.08 60.22 0.10 91.03

A-20 0.14 10.33 0.03 24.47 0.03 87.98
A-22 0.20 11.20 0.03 24.56 0.04 89.15
A-24 0.25 13.48 0.05 28.99 0.05 89.91
A-26 0.44 11.78 0.05 25.53 0.07 90.85
A-28 0.74 11.89 0.07 25.41 0.08 91.55
A-30 0.79 14.43 0.10 30.25 0.10 92.01
A-35 1.56 16.36 0.12 25.77 0.15 92.86
A-40 5.78 17.37 0.15 37.68 0.22 93.68

Average 1.24 13.35 0.07 27.83 0.09 91.00

so, overall number of constraints dropped to 2n(n−1)+1.However, LP relaxation boundquality suffered considerably. In any
case, after balancing gains and losses, overall, relaxation proved attractive and was selected to be used in our experiments.
Inequalities initially dropped from the formulation, were later considered for inclusion in a cutting plane algorithm.
Computational experiments were carried out on a SUN UltraSparc III workstation with 2GB of RAM and running at 1Ghz.

Corresponding LP relaxation solutions were obtained with the solver CPLEX 8.1 [7].
Table 1 compares LP relaxation bounds for the formulations in [8,10] with LP relaxation bounds for the compact version

of our formulation, as suggested above. For each formulation tested and for every value n and set of instances considered,
table entries give the average percentage gaps between optimal values and corresponding LP relaxation values. These gaps,
measured as ( (Opt−LP Relaxation value)∗100Opt ) are followed by corresponding average CPU times. As quoted before, we report on
the average results obtained over 5 instances for each size n considered.
Results in Table indicate that our TDP formulation appears to be quite promising. In spite of its higher CPU time demands,

the LP relaxation bounds it generates are much stronger than those returned by their counterparts in [10,8]. One should
therefore expect that, within an LP relaxation based enumeration scheme to solve the problem, our stronger LP relaxation
bounds should eventually pay off.
From our computational experience, a Branch and Bound algorithm directly based on van Eijl’s formulation appears very

uncompetitive with similar algorithms based on the other two formulations. Specifically, more than one hour of CPU time
was taken by a Branch and Bound algorithm based on van Eijl’s formulation, to solve TDP instances with as few as 16 clients.
These instances, however, were solved in a few seconds of CPU times by the other two algorithms. As a result, algorithms
based on van Eijl’s formulation are not quoted on the tables that follow.
On Table 2, we compare the performance of Branch and Bound algorithms for larger TDP instances. For each algorithm

tested and for every value of n and set of instances considered, table entries respectively give corresponding average CPU
times and average tree sizes. As before, results quoted here are for the averages over 5 instances tested. For the cases where
not all instances were solved within the time limit imposed, i.e. 2 h of CPU time, results quoted are averages for those
instances eventually solved. For each such case, the number of instances solved appears in brackets. Asterisks are used for
those cases where no instances were solved within the time limit imposed.
As it can be appreciated from Table 2, the Branch and Bound algorithm based on the Fischetti, Laport and Martello (FLM)

formulation was clearly dominated by the Branch and Bound algorithm based on our TDP formulation. This conclusion
applies despite the fact that LP relaxation bounds are computationally cheaper to compute for the FLM formulation.
However, as indicated by the results on Table 2, the stronger LP relaxation bounds returned by our formulation, albeit at a
higher CPU cost, proved to be a more effective alternative for Branch and Bound enumeration.
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Table 2
Branch-and-Bound algorithm onMR and FLM models

n MR FLM
Time Nodes Time Nodes

D-20 87.30 23.00 ***** *****
S-20 104.50 29.20 ***** *****
A-20 8.22 2.00 92.55(4) 32875
D-26 4608.42 429.25 ***** *****
S-26 2686.28 286.40 ***** *****
A-26 34.60 4.40 ***** *****

The results above encouraged us to move one step forward and investigate the use of valid inequalities to reinforce the
LP relaxation bounds returned by our formulation.

4. Polyhedral investigations

The aim of this section is to analyze polyhedral properties of the TDP formulation introduced in Section 2. Accordingly,
let CR be the polytope associated with the convex hull of the feasible integral solutions for that formulation.
As the first step in our polyhedral investigations, wewould like to find aminimal equation system forCR and determine

its dimension.

Proposition 1. The dimension of CR is n(n− 1)(n− 5
2 )+ n− 1 and a minimal equation system for that polytope is defined as

xij + xji = 1 ∀i, j = 1, . . . , n, i < j (8)

xjk =
n∑

i=1,i6=j,k

f kij + f
j
0j ∀j, k = 1, . . . , n, j 6= k (9)

xjk =
n∑

i=1,i6=j

f kji ∀j, k = 1, . . . , n, j 6= k (10)

n∑
i=1

f i0i = 1. (11)

Proof. Consider, as a row ordering for the constraint matrix,

• Eq. (8) in lexicographic order on ij (i < j).
• Eq. (9) for j = 1, k = 2.
• Eq. (9) for j = 2, . . . , n− 1, k = 1.
• Eq. (11).
• Eq. (9) for j = 1 and k = 3, . . . , n.
• Eq. (9) for j = 2, . . . , n and k = 2, . . . , n (j 6= k).
• Eq. (9) for j = n and k = 1.
• Eq. (10) in lexicographic order on jk (j 6= k).

Consider as well the following constraint matrix column ordering:

• Variables xij, i < j in lexicographic order on ij.
• Variables f j0j, j = 1, . . . , n.
• Variables f k21, k = 3, . . . , n.
• Variables f k1j, j = 2, . . . , n, k = 2, . . . , n, j 6= k.
• Variable f 12n.
• Variables f jij, i = 1, . . . , n, j = 1, . . . , n, i 6= j.
• Any order for the rest of the variables.

As a result of the ordering suggested above, it is evident that the constraint matrix contains an n(n−1)2 + 2n(n − 1) + 1
lower triangular block having non-zero coefficients along the diagonal. It is then full rank.
Suppose now that there exists an equality

αX + βFini + γ Fsig + δFcam =
n∑
i=1

n∑
j=1
j6=i

αijxij +
n∑
i=1

βif i0i +
n∑
i=1

n∑
j=1
j6=i

γijf
j
ij +

n∑
i=1

n∑
j=1
j6=i

n∑
k=1
k6=i,j

δijkf kij = π0 (12)
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valid with respect to CR. To prove this proposition, we have to show that (α, β , γ , δ) can be written as a combination of the
minimal equation system. We now proceed to proving different cases which allow us to gather the necessary information
on the coefficients in α, β , γ and δ.
Consider scalars aij i, j = 1, . . . , n i < j (corresponding to (8)), bij i, j = 1, . . . , n i 6= j (corresponding to (9)),

cij i, j = 1, . . . , n i 6= j (corresponding to (10)) and d (corresponding (11)) such that:
• αij = aij + bij + cij ∀i < j
• αij = aji + bij + cij ∀i > j
• βi = d−

∑n
j=1 i6=j bij ∀i

• γij = −cij ∀i 6= j
• δijk = −cik − bjk ∀i 6= j 6= k.
We then define
• cij = −γij ∀i 6= j
• bjk = γik − δijk ∀j 6= k for a fixed i 6= j, k
• d = βi +

∑n
r=1 r 6=i bir for a fixed i

• aij = αij − γki + δkij + γij∀i < j for a fixed k 6= i, j.
To establish validity of our choice above, we have to prove that
• Case 1: The definition of bjk does not depend on i, i.e.

γik − δijk − γi′k + δi′jk = 0 ∀i 6= i′.

• Case 2: The definition of d does not depend on i and

βi +

n∑
r=1 r 6=i

bir = βi′ +
n∑

r=1 r 6=i′
bi′r ∀i 6= i′.

Then,

βi + γki′ − δjik −

n∑
r=1,r 6=i,k

δkir − βi′ − γki + δji′k +

n∑
r=1,r 6=i′,k

δki′r = 0 ∀i 6= i′.

• Case 3: Since αij = aji + bij + cij for i < j, it must be checked that

αji + δkji + γji + γkj − αij − δkij − γij − γki = 0 ∀i < j, for any k.

We will now generate multipliers λ and feasible solutions of CR which differ in their components and allow us to
conveniently concentrate on each of the cases above.
• Proof Case 1: Consider feasible solutions FS1, . . . , FS12 of CR, associated with the following paths:

1: v0 vj1 . . . vjn−4 vi vj vi′ vk 7: v0 vj1 . . . vjn−4 vj vi vi′ vk
2: v0 vj1 . . . vjn−4 vi vi′ vj vk 8: v0 vj1 . . . vjn−4 vj vi′ vi vk
3: v0 vj1 . . . vjn−4 vk vi vj vi′ 9: v0 vj1 . . . vjn−4 vi′ vj vi vk
4: v0 vj1 . . . vjn−4 vk vi vi′ vj 10: v0 vj1 . . . vjn−4 vk vj vi vi′
5: v0 vj1 . . . vjn−4 vk vi′ vi vj 11: v0 vj1 . . . vjn−4 vk vj vi′ vi
6: v0 vj1 . . . vjn−4 vi′ vi vj vk 12: v0 vj1 . . . vjn−4 vk vi′ vj vi

where {vj1 , . . . , vjn−4} = V\{v0, vi, vi′ , vj, vk}.
Additionally, consider the linear combination

12∑
i=1

λi(αX i + βF iini + γ F
i
sig + δF

i
cam) =

12∑
i=1

λiπ0

where λ = (− 12 ,
1
2 ,
1
2 ,−

1
2 ,
1
2 ,−

1
2 ,−

1
2 ,
1
2 ,
1
2 ,
1
2 ,−

1
2 ,−

1
2 ).

It is easy to check that γik − δijk − γi′k + δi′jk = 0 follows from the linear combination above.
• Proof Case 2: Consider feasible solutions FS1, . . . , FS8 of CR, associated with the following paths:

1: v0 vi vi′ vk vj1 . . . vjn−4 vj 5: v0 vi′ vk vj1 . . . vjn−4 vi vj
2: v0 vk vi vi′ vj1 . . . vjn−4 vj 6: v0 vk vi′ vj1 . . . vjn−4 vi vj
3: v0 vk vj vi vi′ vj1 . . . vjn−4 7: v0 vk vj vi′ vj1 . . . vjn−4 vi
4: v0 vj vi vi′ vk vj1 . . . vjn−4 8: v0 vj vi′ vk vj1 . . . vjn−4 vi

where {vj1 , . . . , vjn−4} = V\{v0, vi, vi′ , vj, vk}. Taking λ = (1,−1, 1,−1,−1, 1,−1, 1)we conclude that

βi + γki′ − δjik −

n∑
r=1,r 6=i,k

δkir − βi′ − γki + δji′k +

n∑
r=1,r 6=i′,k

δki′r = 0 ∀i 6= i′.
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• Proof Case 3: Consider feasible solutions FS1 and FS2 of CR associated with the following paths:
1: v0 vj1 . . . vjn−3 vk vi vj
2: v0 vj1 . . . vjn−3 vk vj vi
where {vj1 , . . . , vjn−3} = V\{v0, vi, vj, vk}. Defining λ = (1,−1) it then follows that:

αji + δkji + γji + γkj − αij − δkij − γij − γki = 0 ∀i < j, for any k. �

We present next some valid inequalities that are facet defining for CR.

4.1. Facet-defining inequalities

Proposition 2. Family 1 inequalities

f kij ≤ f
j
ij i, j, k = 1, . . . , n, i 6= j, k, j 6= k.

are facet-defining for CR.

Proof. Let F be the face of CR defined by Family 1 inequality f k0i0j0 ≤ f
j0
i0j0
. Any path where vi0 and vj0 are the first vertices in

the path, lie on F . Then F is a proper face of CR.
Suppose that there is an inequality αX + βFini + γ Fsig + δFcam = π0 valid with respect to CR such that F ⊆

CR ∩ {(X, Fini, Fsig , Fcam) : αX + βFini + γ Fsig + δFcam = π0}. To prove the proposition, we have to show that (α, β, γ , δ)
can be written as a combination of the minimal equation system and the Family 1 inequality. We proceed to prove some
different cases involved which allow us to gather sufficient information on the coefficients of α, β, γ and δ to prove the
proposition.
Consider scalars aij i, j = 1, . . . , n i < j (corresponding to (8)), bij i, j = 1, . . . , n i 6= j (Eq. (9)), cij i, j = 1, . . . , n i 6= j

(Eq. (10)), d (Eq. (11)) and e (corresponding to Family 1) such that

• αij = aij + bij + cij ∀i < j
• αij = aji + bij + cij ∀i > j
• βi = d−

∑n
r=1 r 6=i bir ∀i

• γij = −cij ∀i 6= j, (i, j) 6= (i0, j0)
• δijk = −cik − bjk ∀i 6= j 6= k, (i, j, k) 6= (i0, j0, k0)
• γi0j0 = −ci0j0 − e
• δi0j0k0 = −ci0k0 − bj0k0 + e.

We then define:

• e = δi0j0k0 − γi0k0 + γik0 − δij0k0 for some i 6= i0, j0, k0
• cij = −γij ∀(i, j) 6= (i0, j0)
• ci0j0 = −γi0j0 + e
• bjk = γik − δijk for some i, (i, k) 6= (i0, j0), (i, j, k) 6= (i0, j0, k0)
• d = βi +

∑n
j=1 i6=j bij for some i

• aij = αij − bij − cij ∀i < j.

To establish validity of the above, we must prove that

• Case 1: bjk does not depend on i, i.e.

γik − δijk − γi′k + δi′jk = 0

∀i, j, k, i′ ∈ {1, . . . , n} such that (i, j, k) 6= (i0, j0, k0), (i, k) 6= (i0, j0) and (i′, k) 6= (i0, j0).
• Case 2: For (i, k) = (i0, j0), we have bjj0 = γi0j0 − δi0jj0 + e and bjj0 = γij0 − δijj0 ∀i 6= i0. Then,

e = −γi0j0 + δi0jj0 + γij0 − δijj0
for i, j 6= i0, j0. Taking into account the definition of e, we must check that

γij0 + δi0jj0 − γi0j0 − δijj0 + γi0k0 + δij0k0 − γik0 − δi0j0k0 = 0

∀j 6= i0, j0 and any i 6= k0
• Case 3: d does not depend on i:

βi0 + γki′ −

n∑
r=1 r 6=i0,k

δki0r − δji0k − βi′ − γki0 +

n∑
r=1 r 6=i′,k

δki′r + δji′k = 0

∀i′ 6= i0, k, j 6∈ {i0, j0, k0}must be checked.
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• Case 4: For i < j, (i, j), (j, i) 6= (i0, j0), we must first verify that

aij = αji − bji − cji = αij − bij − cij
and then that αij + δkij − γkj + γij = αji + δkji − γki + γji follows.
Thus, if (i, j) or (j, i) = (i0, j0), then

αi0j0 + δii0j0 − γij0 + γi0j0 + e = αj0 i0 + δij0i0 − γii0 + γj0i0 .

• Proof Case 1: We analyze 5 possibilities. For each of them, we identify multipliers λ and feasible solutions of CR which
differ in their components and enable the proof.
1. For i, j, k, i′ 6∈ {i0, j0, k0}, consider the paths

1: v0 vj1 . . . jn−7 vi0 vj0 vk0 vk vj vi vi′ 7: v0 vj1 . . . vjn−7 vi0 vj0 vk0 vj vi vi′ vk
2: v0 vj1 . . . jn−7 vi0 vj0 vk0 vk vj vi′ vi 8: v0 vj1 . . . vjn−7 vi0 vj0 vk0 vj vi′ vi vk
3: v0 vj1 . . . jn−7 vi0 vj0 vk0 vk vi vj vi′ 9: v0 vj1 . . . vjn−7 vi0 vj0 vk0 vi vj vi′ vk
4: v0 vj1 . . . jn−7 vi0 vj0 vk0 vk vi vi′ vj 10: v0 vj1 . . . vjn−7 vi0 vj0 vk0 vi vi′ vj vk
5: v0 vj1 . . . jn−7 vi0 vj0 vk0 vk vi′ vj vi 11: v0 vj1 . . . vjn−7 vi0 vj0 vk0 vi′ vj vi vk
6: v0 vj1 . . . jn−7 vi0 vj0 vk0 vk vi′ vi vj 12: v0 vj1 . . . vjn−7 vi0 vj0 vk0 vi′ vi vj vk

where {vj1 , . . . , vjn−7} = V\{v0, vi0 , vj0 , vk0 , vi, vi′ , vj, vk}.
The condition thus follows from the linear combination given by
λ = ( 12 ,−

1
2 ,
1
2 ,−

1
2 ,−

1
2 ,
1
2 ,−

1
2 ,
1
2 ,−

1
2 ,
1
2 ,
1
2 ,−

1
2 ).

2. {i, j, k} ∩ {i0, j0, k0} = {p}.
Take the paths and multipliers in the first case and delete vertex vp from subpath vi0 vj0 vk0 .

3. {i, j, k} ∩ {i0, k0} = {vp1 , vp2} or {i, j, k} ∩ {j0, k0} = {vp1 , vp2}.
Similar to the previous case, deleting however vertices vp1 and vp2 from subpath vi0 vj0 vk0 .

4. |{i, j, k, i′} ∩ {i0, j0}| = 2.
Six possibilities are involved, respectively given by
(a) i = i0 y j = j0

1: v0 vj1 . . . vjn−5 vj0 vi0 vk0 vi′ vk 5: v0 vj1 . . . vjn−5 vk vi′ vj0 vi0 vk0
2: v0 vj1 . . . vjn−5 vk vi′ vi0 vj0 vk0 6: v0 vj1 . . . vjn−5 vi′ vj0 vi0 vk0 vk
3: v0 vj1 . . . vjn−5 vi′ vi0 vj0 vk0 vk 7: v0 vj1 . . . vjn−5 vk vj0 vk0 vi′ vi0
4: v0 vj1 . . . vjn−5 vk vj0 vi0 vk0 vi′ 8: v0 vj1 . . . vjn−5 vj0 vk0 vi′ vi0 vk

with {vj1 , . . . , vjn−5} = V\{v0, vi0 , vj0 , vk0 , vi′ , vk}.
Take λ = (−1, 1,−1, 1,−1, 1,−1, 1).

(b) i = i0 y i′ = j0
1: v0 vj1 . . . vjn−5 vi0 vk0 vj0 vj vk 5: v0 vj1 . . . vjn−5 vk0 vj0 vi0 vj vk
2: v0 vj1 . . . vjn−5 vi0 vk0 vj vj0 vk 6: v0 vj1 . . . vjn−5 vk vk0 vj0 vi0 vj
3: v0 vj1 . . . vjn−5 vk vi0 vk0 vj0 vj 7: v0 vj1 . . . vjn−5 vk0 vj vj0 vi0 vk
4: v0 vj1 . . . vjn−5 vk vi0 vk0 vj vj0 8: v0 vj1 . . . vjn−5 vk vk0 vj vj0 vi0

with {vj1 , . . . , vjn−5} = V\{v0, vi0 , vj0 , vk0 , vj, vk}.
Take λ = (1,−1,−1, 1,−1, 1, 1,−1).

(c) i = j0 y j = i0
1: v0 vj1 . . . vjn−5 vi0 vk0 vi′ vj0 vk 5: v0 vj1 . . . vjn−5 vj0 vi0 vk0 vi′ vk
2: v0 vj1 . . . vjn−5 vi0 vk vk0 vi′ vj0 6: v0 vj1 . . . vjn−5 vj0 vi0 vk vk0 vi′
3: v0 vj1 . . . vjn−5 vk vi′ vi0 vk0 vj0 7: v0 vj1 . . . vjn−5 vk vi′ vj0 vi0 vk0
4: v0 vj1 . . . vjn−5 vi′ vi0 vk vk0 vj0 8: v0 vj1 . . . vjn−5 vi′ vj0 vi0 vk vk0

with {vj1 , . . . , vjn−5} = V\{v0, vi0 , vj0 , vk0 , vi′ , vk}.
Take λ = (1,−1,−1, 1,−1, 1, 1,−1).

(d) i = j0 y k = i0
1: v0 vj1 . . . vjn−5 vi0 vk0 vj0 vi′ vj 5: v0 vj1 . . . vjn−5 vk0 vj0 vi′ vj vi0
2: v0 vj1 . . . vjn−5 vi0 vk0 vj vj0 vi′ 6: v0 vj1 . . . vjn−5 vk0 vj vj0 vi′ vi0
3: v0 vj1 . . . vjn−5 vi′ vi0 vk0 vj0 vj 7: v0 vj1 . . . vjn−5 vi′ vk0 vj0 vj vi0
4: v0 vj1 . . . vjn−5 vi′ vi0 vk0 vj vj0 8: v0 vj1 . . . vjn−5 vi′ vk0 vj vj0 vi0

with {vj1 , . . . , vjn−5} = V\{v0, vi0 , vj0 , vk0 , vi′ , vj}.
Take λ = (−1, 1, 1,−1, 1,−1,−1, 1).

(e) j = i0 y k = j0
1: v0 vj1 . . . vjn−5 vi0 vj0 vk0 vi vi′ 5: v0 vj1 . . . vjn−5 vi′ vi0 vj0 vk0 vi
2: v0 vj1 . . . vjn−5 vi0 vk0 vi vi′ vj0 6: v0 vj1 . . . vjn−5 vi′ vi0 vk0 vi vj0
3: v0 vj1 . . . vjn−5 vi vi0 vj0 vk0 vi′ 7: v0 vj1 . . . vjn−5 vj0 vi vi0 vk0 vi′
4: v0 vj1 . . . vjn−5 vi vi′ vi0 vj0 vk0 8: v0 vj1 . . . vjn−5 vj0 vi vi′ vi0 vk0
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with {vj1 , . . . , vjn−5} = V\{v0, vi0 , vj0 , vk0 , vi′ , vi}.
Take λ = (1,−1,−1, 1,−1, 1, 1,−1).

(f) j = j0 y k = i0
1: v0 vj1 . . . vjn−5 vi0 vk0 vj0 vi′ vi 5: v0 vj1 . . . vjn−5 vk0 vj0 vi′ vi vi0
2: v0 vj1 . . . vjn−5 vi0 vk0 vi′ vi vj0 6: v0 vj1 . . . vjn−5 vk0 vi′ vi vj0 vi0
3: v0 vj1 . . . vjn−5 vi vi0 vk0 vj0 vi′ 7: v0 vj1 . . . vjn−5 vi vk0 vj0 vi′ vi0
4: v0 vj1 . . . vjn−5 vi vi0 vk0 vi′ vj0 8: v0 vj1 . . . vjn−5 vi vk0 vi′ vj0 vi0

with {vj1 , . . . , vjn−5} = V\{i0, j0, k0, i
′, i}.

Take λ = (−1, 1, 1,−1, 1,−1,−1, 1).
5. {i, j, i′, k} ∩ {i0, j0, k0} = 3
Consider the paths

1: v0 vj1 . . . vjn−4 vi0 vj0 vk0 vl 12: v0 vj1 . . . vjn−4 vj0 vl vk0 vi0
2: v0 vj1 . . . vjn−4 vi0 vj0 vl vk0 13: v0 vj1 . . . vjn−4 vk0 vi0 vl vj0
3: v0 vj1 . . . vjn−4 vi0 vk0 vj0 vl 14: v0 vj1 . . . vjn−4 vk0 vj0 vi0 vl
4: v0 vj1 . . . vjn−4 vi0 vk0 vl vj0 15: v0 vj1 . . . vjn−4 vk0 vj0 vl vi0
5: v0 vj1 . . . vjn−4 vi0 vl vj0 vk0 16: v0 vj1 . . . vjn−4 vk0 vl vj0 vi0
6: v0 vj1 . . . vjn−4 vi0 vl vk0 vj0 17: v0 vj1 . . . vjn−4 vl vi0 vj0 vk0
7: v0 vj1 . . . vjn−4 vj0 vi0 vk0 vl 18: v0 vj1 . . . vjn−4 vl vi0 vk0 vj0
8: v0 vj1 . . . vjn−4 vj0 vi0 vl vk0 19: v0 vj1 . . . vjn−4 vl vj0 vi0 vk0
9: v0 vj1 . . . vjn−4 vj0 vk0 vi0 vl 20: v0 vj1 . . . vjn−4 vl vj0 vk0 vi0
10: v0 vj1 . . . vjn−4 vj0 vk0 vl vi0 21: v0 vj1 . . . vjn−4 vl vk0 vj0 vi0
11: v0 vj1 . . . vjn−4 vj0 vl vi0 vk0

where {vj1 , . . . , vjn−4} = V\{i0, vj0 , k0, l}.
We now present multipliers for each of the 9 different possibilities involved.

(a) i = i0, j = j0, i′ = k0 y l = k.
λ = (− 12 ,−

1
2 ,
1
2 ,
1
2 ,−

1
2 ,
1
2 ,−1, 0, 0,

1
2 , 0,

1
2 , 0, 1,−

1
2 ,−

1
2 , 1,−1, 1,−

1
2 ,−

1
2 ).

(b) i = i0, k = j0, i′ = j0 y l = j.
λ = (− 12 ,

1
2 ,−

1
2 ,
1
2 ,−

1
2 ,
1
2 , 0,−1, 0,

1
2 , 0,

1
2 , 0, 1,−

1
2 ,−

1
2 , 0, 0, 1,−

1
2 ,−

1
2 ).

(c) i = i0, j = k0 y i′ = j0 y l = k
λ = ( 12 ,−

1
2 ,−

1
2 ,
1
2 ,−

1
2 ,
1
2 ,−1, 0, 0,

1
2 , 0,

1
2 , 0, 1,−

1
2 ,−

1
2 , 0, 0, 1,−

1
2 ,−

1
2 ).

(d) i = j0, j = i0, k = k0 y l = i′

λ = ( 12 ,−
1
2 ,
1
2 ,−

1
2 ,
1
2 ,−

1
2 , 0, 0, 0,−

1
2 , 1,−

1
2 , 0, 0,−

1
2 ,
1
2 , 0, 0,−1,

1
2 ,
1
2 ).

(e) i = j0, j = i0, i′ = k0 y l = k
λ = (− 12 ,

1
2 ,
1
2 ,−

1
2 ,
1
2 ,−

1
2 , 0, 0, 1,−

1
2 , 0,−

1
2 , 0,−1,

1
2 ,
1
2 , 0, 0, 0,−

1
2 ,
1
2 ).

(f) i = j0, k = i0, i′ = k0 y l = j.
λ = (− 12 ,

1
2 ,
1
2 ,−

1
2 ,
1
2 ,−

1
2 , 0, 0, 0,

1
2 , 0,−

1
2 , 0, 0,−

1
2 ,
1
2 , 0, 0, 0,−

1
2 ,
1
2 ).

(g) i = j0, j = k0, k = i0 y l = i′.
λ = ( 12 ,−

1
2 ,
1
2 ,−

1
2 ,
1
2 ,−

1
2 , 0, 0, 0,−

1
2 , 0,

1
2 , 0, 0,−

1
2 ,
1
2 , 0, 0, 0,−

1
2 ,
1
2 ).

(h) i = k0, j = i0, k = j0 y l = i′.
λ = (− 12 ,

1
2 ,−

1
2 ,−

1
2 ,
1
2 ,
1
2 , 1,−1, 1,−

1
2 ,−1,

1
2 ,−1, 0,

1
2 ,
1
2 , 0, 1, 0,−

1
2 ,−

1
2 ).

(i) i = k0, j = j0, k = i0 y l = i′

λ = ( 12 ,−
1
2 ,
1
2 ,−

1
2 ,−

1
2 ,
1
2 , 0, 0, 0,−

1
2 , 0,

1
2 , 0, 0,−

1
2 ,
1
2 , 0, 0, 0,

1
2 ,−

1
2 ).

• Proof Case 2: Two cases are involved.
1. For j = k0, consider the following paths

1: v0 vj1 . . . vjn−4 vi0 vi vj0 vk0 3: v0 vj1 . . . vjn−4 vi vi0 vj0 vk0
2: v0 vj1 . . . vjn−4 vi0 vi vk0 vj0 4: v0 vj1 . . . vjn−4 vi vi0 vk0 vj0

with {vj1 , . . . , vjn−4} = V\{v0, vi0 , vj0 , vk0 , vi}.
If λ = (−1, 1, 1,−1) is taken, the condition follows.

2. For j 6= k0, consider the following paths
1: v0 vj1 . . . vjn−5 vi vi0 vj vk0 vj0 6: v0 vj1 . . . vjn−5 vj0 vj vi vi0 vk0
2: v0 vj1 . . . vjn−5 vj vi0 vi vj0 vk0 7: v0 vj1 . . . vjn−5 vj0 vi vj vk0 vi0
3: v0 vj1 . . . vjn−5 vj vi0 vi vk0 vj0 8: v0 vj1 . . . vjn−5 vj0 vj vi vk0 vi0
4: v0 vj1 . . . vjn−5 vj vi vi0 vj0 vk0 9: v0 vj1 . . . vjn−5 vi vj vk0 vj0 vi0
5: v0 vj1 . . . vjn−5 vj0 vi vi0 vj vk0 10: v0 vj1 . . . vjn−5 vj vi vk0 vj0 vi0

with {vj1 , . . . , vjn−5} = V\{v0, vi0 , vj0 , vk0 , vi, vj}.
If λ = (1, 1,−1,−1,−1, 1, 1,−1,−1, 1) is taken, the condition follows.
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• Proof Case 3: We consider 3 possibilities
1. For i′ = j0, consider the paths

1: v0 vi0 vj0 vj vk0 vk vj1 . . . vjn−5 5: v0 vj0 vj vk0 vk vi0 vj1 . . . vjn−5
2: v0 vk vi0 vj0 vj vk0 vj1 . . . vjn−5 6: v0 vk vj0 vj vk0 vi0 vj1 . . . vjn−5
3: v0 vk vj vi0 vj0 vk0 vj1 . . . vjn−5 7: v0 vk vj vj0 vk0 vi0 vj1 . . . vjn−5
4: v0 vj vi0 vj0 vk0 vk vj1 . . . vjn−5 8: v0 vj vj0 vk0 vk vi0 vj1 . . . vjn−5

with {vj1 , . . . , vjn−5} = V\{v0, vi0 , vj0 , vk0 , vj, vk}.
Taking λ = (1,−1, 1,−1,−1, 1,−1, 1), the condition follows.

2. For i′ = k0, consider the paths
1: v0 vi0 vk0 vj vj0 vk vj1 . . . vjn−5 5: v0 vk0 vj vj0 vk vi0 vj1 . . . vjn−5
2: v0 vk vi0 vk0 vj vj0 vj1 . . . vjn−5 6: v0 vk vk0 vj vj0 vi0 vj1 . . . vjn−5
3: v0 vk vj vi0 vk0 vj0 vj1 . . . vjn−5 7: v0 vk vj vk0 vj0 vi0 vj1 . . . vjn−5
4: v0 vj vi0 vk0 vj0 vk vj1 . . . vjn−5 8: v0 vj vk0 vj0 vk vi0 vj1 . . . vjn−5

with {vj1 , . . . , vjn−5} = V\{v0, vi0 , vj0 , vk0 , vj, vk}.
Taking λ = (1,−1, 1,−1,−1, 1,−1, 1), the condition follows.

3. For i′ 6∈ {j0, k0}, consider the paths
1: v0 vi0 vi′ vj vj0 vk vk0 vj1 . . . vjn−6 5: v0 vi′ vj vj0 vi0 vk0 vk vj1 . . . vjn−6
2: v0 vk vi0 vi′ vj vj0 vk0 vj1 . . . vjn−6 6: v0 vk vi′ vj vj0 vk0 vi0 vj1 . . . vjn−6
3: v0 vk vj vi0 vi′ vj0 vk0 vj1 . . . vjn−6 7: v0 vk vj vi′ vj0 vk0 vi0 vj1 . . . vjn−6
4: v0 vj vi0 vi′ vj0 vk vk0 vj1 . . . vjn−6 8: v0 vj vi′ vj0 vi0 vk0 vk vj1 . . . vjn−6

with {vj1 , . . . , vjn−5} = V\{v0, vi0 , vj0 , vk0 , vi′ , vj, vk}.
Taking λ = (1,−1, 1,−1,−1, 1,−1, 1), the condition follows.

• Proof Case 4: Possibilities involved are:
1. i, j 6∈ {i0, j0, k0}: We must prove that

αij + δkij − γkj + γij = αji + δkji − γki + γji.

In order to do so, consider the paths
1: v0 vj1 . . . vjn−6 vi0 vj0 vk0 vk vi vj 2: v0 vj1 . . . vjn−6 vi0 vj0 vk0 vk vj vi

with {vj1 , . . . , vjn−5} = V\{v0, vi0 , vj0 , vk0 , vi, vj, vk} and take λ = (1,−1).
2. {i, j} ∩ {i0, j0, k0} = {p}.
Consider the paths and multipliers from the previous case and delete vertex vp from subpath vi0 , vj0 , vk0 .

3. {i, j} = {i0, k0} or {i, j} = {j0, k0}.
Consider the paths and multipliers from the previous case and delete vertices vi and vj from subpath vi0 , vj0 , vk0 .

4. {i, j} = {i0, j0}.
We must prove that

αi0j0 + δii0j0 − γij0 + γi0j0 + e = αj0 i0 + δij0 i0 − γii0 + γj0 i0 .

In order to do so, consider the paths:
1: v0 vj1 . . . vjn−5 vk0 vi0 vi vj vj0 5: v0 vj1 . . . vjn−5 vj0 vj vk0 vi0 vi
2: v0 vj1 . . . vjn−5 vk0 vi vi0 vj vj0 6: v0 vj1 . . . vjn−5 vj0 vk0 vi vi0 vj
3: v0 vj1 . . . vjn−5 vj vk0 vi0 vi vj0 7: v0 vj1 . . . vjn−5 vj0 vj vk0 vi vi0
4: v0 vj1 . . . vjn−5 vj0 vk0 vi0 vi vj 8: v0 vj1 . . . vjn−5 vj vk0 vi vj0 vi0

with {vj1 , . . . , vjn−5} = V\{v0, vi0 , vj0 , vk0 , vi, vj}.
Taking λ = (−1, 1, 1, 1,−1,−1, 1,−1), the condition follows. �

Additional valid inequalities are presented next. They are facet-defining for CR. However, to simplify the presentation,
we omit corresponding proofs since they run along the same lines of the proofs previously presented in this paper.

Proposition 3. For i, j, k, l = 1, . . . , n, i 6= j, k, l, j 6= k, l, k 6= l, inequalities

f jij + f
j
il + f

l
kj ≤ xij + f

i
kj

f jij + f
j
il + f

j
kl ≤ xij + f

i
kl

f i0i + f
j
ij ≤ xij + f

k
ij

f jik + f
j
ki + f

k
il + f

k
ij + f

k
jl + f

k
jk ≤ xij + xjk

are facet-defining for CR.
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Proposition 4. For i, j, k = 1, . . . , n, i 6= j, k, j 6= k, inequalities

f jki + f
j
ik + f

k
jk ≤ xij + f

i
jk

f kij + f
j
ki + f

j
ik ≤ xij

f kjk + f
j
ik + f

j
ij ≤ xij + f

k
ij + f

i
jk

are facet-defining for CR.

4.2. Inequalities derived from LOP

Two families of facet defining inequalities for the LOP polytope, denoted respectively 3-Cycle and k-Fence, were
introduced in Grötschel, Jünger and Reinelt [14]. Valid inequalities for CR, obtained after lifting 3-Cycle and k-Fence
inequalities, are presented next.

4.2.1. 3-cycle inequalities
The 3-Cycle inequalities

xij + xjk + xki ≤ 2 i, j, k = 1, . . . , n, i 6= j, k, j 6= k

are valid for the CR. They are not, however, facet-defining for that polytope. This holds true since xij+ xjk+ xki = 2 implies
f lji = f

l
kj = f

l
ik = 0 for all l = 1, . . . , n. However, a lifting procedure may be applied to 3-Cycle inequalities (considering

different orderings of variables for sequential lifting) to obtain families of inequalities that are facet defining for CR. This
applies to the two families of inequalities that follow:

Proposition 5. Inequality

xij + xjk + xki + f
j
ik + f

i
ji ≤ 2

is facet-defining for CR.

Proposition 6. Inequality

xij + xjk + xki + f ikj + f
j
ik + f

k
ji ≤ 2.

is facet-defining for CR.

Assume now that vertex sets U = {u1, . . . , uk} and W = {w1, . . . , wk}, of cardinality k ≥ 3, are given. In association
with U andW , define an arc set A = ∪ki=1({(ui, wi)} ∪ {(wi, v)|v ∈ U\{ui}}). A k-Fence inequality is then given by∑

(ij)∈A

xij ≤ k2 − k+ 1.

The above inequalities are valid for our formulation. However they are not facet defining forCR. If
∑

(ij)∈A xij = k
2
−k+1

implies, for instance, f ui0ui = 0,∀i = 1, . . . , k. Applying, once again, sequential lifting over these variables and also over
distinct variables f uiwiui∀i = 1, . . . , k, a stronger valid inequality

(k− 2)
k∑
i=1

f ui0ui +
k∑
i=1

f uiwiui +
k∑
i=1

xuiwi +
k∑
i=1

k∑
j=1 j6=i

xwiuj ≤ k
2
− k+ 1

results. Although stronger, this inequality is still not facet-defining for CR.

5. Computational experiments

Valid inequalities introduced in the previous section for CR, are used here to reinforce TDP LP relaxation bounds. The
stronger bounds thus obtained are then embedded into a Branch and Bound algorithm for TDP.

5.1. A cutting plane algorithm

Assume that one intends to implement a cutting plane algorithm to TDP. Assume aswell that such an algorithm should be
based on the families of valid TDP inequalities described in previous sections. Thus, given a fractional LP relaxation solution,
a corresponding separation problemmust be solved for each different family of inequalities involved. In doing so, as a solution
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Table 3
Gap improvement by cutting plane algorithm

Inst. Relax. Set 0 Set 0+ Set 1 Set 0+ Set 2 Set 0+ Set 1+ Set 2
%Gap Time %Gap Time %Gap Time %Gap Time %Gap Time

D-20 17.58 0.09 13.84 6.36 4.46 7.48 9.07 8.91 4.46 6.35
D-22 22.75 0.11 14.98 6.46 0.54 27.84 8.27 9.2 0.5 21.08
D-24 22.97 0.17 16.14 10.21 0.65 70.21 9.18 14.35 0.61 50.57
D-26 22.12 0.22 15.76 14.96 0.32 125.77 8.16 23.62 0.25 100
D-28 23.29 0.4 17.32 22.68 0.74 230.62 10.02 33.6 0.68 166.94
D-30 21.78 0.48 15.67 32.45 0.71 280.36 9.03 52.59 0.64 221.39
D-35 24.58 0.91 20.24 118.08 1.36 1233.72 12.35 159.94 1.29 694.5
D-40 26.2 2.01 20.9 318.25 1.66 3481.09 11.97 402.21 1.54 2090.91

Average 22.66 0.55 16.86 66.18 1.3 682.14 9.76 88.05 1.25 418.97

S-20 35.84 0.08 17.64 6.23 0 8.55 8.53 9.67 0 8.69
S-22 28.03 0.13 17.06 6.32 0 20.94 10.33 9.57 0 21.42
S-24 43.67 0.19 26.6 12.38 0.25 61.92 16.91 19.37 0.11 63.17
S-26 36.52 0.27 20.58 17.51 0.3 50.12 12.2 28.2 0.23 52.99
S-28 38.77 0.42 23.58 30.17 0.12 117.54 14.43 50.45 0.05 124.01
S-30 38.76 0.58 24.63 47.35 0.36 216.72 15.42 77.67 0.22 221.22
S-35 46.4 1.04 29.96 154.17 0.2 729.99 18.3 245.79 0.07 704.96
S-40 44.84 2.71 31.28 511.89 1.69 2428.75 20.19 676.99 1.35 2566.65

Average 39.1 0.68 23.92 98.25 0.37 454.32 14.54 139.71 0.25 470.39

A-20 10.33 0.14 2.8 3.94 0 3.27 0.8 5.58 0 3.28
A-22 11.2 0.2 3.4 4.69 0 4.4 1.22 5.54 0 4.46
A-24 13.48 0.25 5.7 6.91 0.18 16.55 3.41 9.59 0.15 16.1
A-26 11.78 0.44 3.27 13.3 0 14.05 1.06 18.69 0 14.17
A-28 11.89 0.74 5.01 20.75 0.52 63.74 3 27.92 0.47 64.06
A-30 14.43 0.79 6.53 32.53 0.61 66.09 3.1 48.06 0.58 69.46
A-35 16.36 1.56 3.27 92.29 0.11 183.92 1.75 133.13 0.1 176.04
A-40 17.37 5.78 9.43 252.13 1.97 993.85 6.66 390.66 1.9 1043.7

Average 13.35 1.24 4.93 53.32 0.42 168.23 2.62 79.9 0.4 173.91

to these problems, one should either exhibit an inequality that is violated at the given fractional solution or else obtain a
certificate that no such inequality exists.
For any family of valid TDP inequalities in Section 4, only a polynomial number of inequalities exist. As a result,

corresponding separation problems could be efficiently tackled through direct enumeration. Additionally, for the case of
lifted k-Fence inequalities, after some computational testing,wewill only use inequalitieswith k = 3 in the experiments that
follow. A greedy heuristic is used for the separation of 3-Fence inequality. Given the current LP relaxation solution (x∗, f ∗),
we search for three arcs (u1, w2), (u2, w2) and (u3, w3), having no endnode in common such that 0.4 ≤ f

ui
wiui , xuiwi ≤ 0.6.

Then, we check if the 3-Fence inequality associated with these arcs is violated.
In order to evaluate the strength of the inequalities to be investigated, TDP lower bounds returned by the cutting

plane algorithm are compared with the original LP relaxation bounds. Furthermore, we now use, as cutting planes, those
inequalities that were previously dropped from the LP relaxation tested in Section 3. Two stopping criteria are used in the
experiments. In accordance with these, the cutting plane algorithm either stops if no violated inequality is identified or else
if half an hour of CPU time is spent.
For the results in Table 3, valid inequalities are divided in three large sets. The first one, denoted Set 0, only contains

the inequalities dropped from the original LP relaxation (see Section 3). The second set, denoted Set 1, only contains those
inequalities in Section 4 that directly originate from the TDP formulation in Section 2. The third set, denoted Set 2, only
contains those inequalities that originate from LOP. Four types of experiments were conducted. The first one restricts the
cutting plane algorithm to using only additional inequalities from Set 0. Likewise, the second experiment is restricted to
only using additional inequalities from Set 0 and Set 1. For the third experiment, only additional inequalities from Set 0 and
Set 2 are used. Finally, for the fourth experiment, inequalities from any of the three sets defined above may be used.
Results on Table 3 indicate that substantial TDP lower bound improvements are attained through the use of the valid

inequalities suggested in this study. That proved particularly true for those inequalities in Set 1. However, for some of
the instances tested, inequalities in Set 2 succeeded in further improving Set 1 lower bounds. Furthermore, in most of the
instances that happened with lower CPU time demand, and only a few cases incurred into negligible additional time. As a
result, we concluded that the combined use of inequalities fromSet 0, Set 1 and Set 2 is likely to attain the best computational
results in an implicit enumeration scheme to solve TDP.

5.2. Branch-and-Bound vs BC-R

Some additional experiments were conducted to evaluate the potential benefits of using, within an implicit enumeration
scheme, the cutting plane algorithm described above. As part of that experiment, a Branch and Bound algorithm where



I. Méndez-Díaz et al. / Discrete Applied Mathematics 156 (2008) 3223–3237 3235

Table 4
BC-R vs Branch-and-Bound in random instances
n BC-R B-and-B

Time Nodes Time Nodes

D-20 7.72 0.00 87.30 23.00
D-22 43.18 1.20 478.85 115.60
D-24 108.66 1.60 3276.89 430.00
D-26 155.30 2.00 4608.42 429.25

Average 78.72 1.20 2112.87 249.46

S-20 8.68 0.00 104.50 29.20
S-22 20.80 0.00 309.43 79.6
S-24 68.18 0.80 3866.27 479.20
S-26 60.08 0.40 2686.28 286.40

Average 39.43 0.30 1741.62 218.60

A-20 3.35 0.00 8.22 2.00
A-22 4.52 0.00 11.79 3.60
A-24 17.05 0.40 97.12 23.00
A-26 14.48 0.00 34.60 4.40

Average 9.85 0.10 37.93 8.25

cutting planes are used at the nodes of the enumeration tree, was implemented. The resulting algorithm, denoted BC-R, was
compared with a pure Branch and Bound algorithm, where no cutting planes are used. For convenience, we simply denote
by Branch and Bound the comparison algorithm. In practical terms, we have compared BC-R with itself, after switching off
its cutting plane subroutine. The search strategy used was Depth-First while the pseudo reduced cost branching variable
selection was applied.
Comparisons were carried out over 5 instances, for each value of n considered, where n ≤ 26. In order to solve instances

with n > 26, the use of cutting planes appears essential, if one is to comply with the 2 h CPU time deadline limit imposed.
Results on Table 4, clearly indicate that BC-R attains a better performance than Branch and Bound.

5.3. CPLEX vs BC-R

After implementing an ad-hoc Branch and Bound algorithm such as BC-R, it appears quite natural to compare it with a
general purpose Mixed Integer Programming solver such as CPLEX [7]. In doing so, it should be stressed that CPLEX benefits
from features such as preprocessing, clique cuts and cover cuts.
Instances with n up to 40 were used in the experiments. Table 5 presents the average results obtained for every value of

n considered (over the 5 instances tested in each case). Specifically, CPU times and number of tree nodes explored appear
on that table, where symbol ***** is used to indicate that the corresponding instance could not be solved within the 2.5 h
CPU time limit imposed.
As it can be appreciated from the results on Table 5, within the time limit imposed, instances up to 26 clients could be

solved to optimality by both algorithms. But, CPLEX CPU time requirements are significantly higher. CPLEX could only solve
instances with 28 clients in the assymetric case. Once again, the CPU time costs were higher than BC-R time costs. A much
better performance was attained by BC-R which managed to solve to proven optimality all instances tested within the CPU
time limit imposed.

5.4. Non randomly generated test instances

So far, TDP solution algorithms have basically been tested on randomly generated instances such as the ones used in
this study. The only exception to that is found in Wu, Huang, and Zhan [23] where 4 non randomly generated TSPLIB
instances (http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/) are used in computational experiments.
In line with [23], we now present computational results for 13 non randomly generated TSPLIB instances. It should be
stressed that, contrary to most TDP solution algorithms, ours do not require test instances to be geometric. It is thus more
general than their counterparts. However, generality comes at a price and, specifically for geometric instances, our algorithm
looses strength for not being geared to that type of instance.
Computational results are presented in Table 6 and involve instances with up to 40 vertices. The first 9 instances

in that table are symmetric while the 3 remaining ones are asymmetric. Comparing results in Table 6 with those we
previouly obtained, it becomes evident that the non randomly generated instances appear much harder for our algorithm
to solve than randomly generated ones. Reasons for that are probably associated with the fact that, in addition to being
geometric, these TSPLIB instances are much more structured. As one may recall, our algorithm is not geared to this type of
instance.

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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Table 5
BC-R vs CPLEX in random instances

BC-R Cplex
Time Nodes Time Nodes

D-20 7.72 0.00 108.10 30.20
D-22 43.18 1.20 472.38 115.60
D-24 108.66 1.60 3216.22 438.00
D-26 155.30 2.00 4629.42 429.25
D-28 424.32 4.80 **** ****
D-30 448.59 3.20 **** ****
D-35 1790.53 5.20 **** ****
D-40 8097.56 14.00 **** ****

Average 1384.48 4.00 **** ****

S-20 8.68 0.00 103.71 28.40
S-22 20.80 0.00 296.20 79.60
S-24 68.18 0.80 3617.51 479.20
S-26 60.08 0.40 2704.52 286.40
S-28 120.79 0.40 **** ****
S-30 248.59 0.80 **** ****
S-35 682.79 0.40 **** ****
S-40 6011.65 11.2 **** ****

Average 902.69 1.75 **** ****

A-20 3.35 0.00 8.29 2.00
A-22 4.52 0.00 11.73 3.60
A-24 17.05 0.40 94.64 23.00
A-26 14.48 0.00 36.07 4.40
A-28 81.09 1.60 490.21 54.2
A-30 132.54 2.40 **** ****
A-35 198.69 0.80 **** ****
A-40 5358.86 16.20 **** ****

Average 726.32 2.68 **** ****

Table 6
BC-R vs CPLEX vs Branch-and-Bound in real data

BC-R Cplex B-and-B
Time Nodes Time Nodes Time Nodes

bayg29 5334.55 56 **** **** **** ****
bays29 1440.34 18 **** **** **** ****
burma14 0.61 0 1.54 2 1.63 2
fri26 293.74 6 3580.84 346 3542.64 346
gr17 22.44 2 60.04 32 64.28 42
gr21 22.57 0 317.50 78 355.88 80
gr24 18.06 0 482.57 96 484.24 96
ulysses16 64.11 8 177.49 126 267.63 164
ulysses22 1190.91 34 **** **** **** ****

br17 3979.86 196 **** **** **** ****
ftv33 5029.67 28 **** **** **** ****
ftv35 8585.87 38 **** **** **** ****
ftv38 3231.61 8 **** **** **** ****

6. Conclusions and future work

AnewTDP formulation and someassociated valid inequalitieswere introduced in this paper. LP relaxation bounds for that
formulation proved much stronger than two other TDP lower bounds proposed in the literature. Furthermore, considerable
additional lower bound gains are attained through the use of the valid inequalities proposed here.
TDP is clearly a very challenging problem to solve to proven optimality. Having that in mind, the results obtained in this

paper indicate that a cutting plane algorithm, like the one suggested here, is an attractive proposition for generating good
quality lower bounds for that problem. Moreover, the proposed cutting plane algorithm, operating at the nodes of a Branch
and Bound tree, has shown to be particularly useful in substantially reducing the number of Branch and Bound nodes, as
well as CPU time.
We hope that the results obtained here stimulate further research on polyhedral algorithms to solve TDP. For that

problem, this kind of investigation is barely starting and this paper is the very first contribution in that direction.
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