Abstract:
We prove that if C is a cocommutative k-coalgebra such that dimk(ke Λ ke) < N for all group-like elements e εo C ⊗ k, then smoothness of C is equivalent to the condition Hoch*(C) = 0 for all * ≥ N. © 2002 Elsevier Science B.V. All rights reserved.
Referencias:
- Atiyah, M., MacDonald, I., Introduction to Commutative Algebra (1969), Series in Mathematics, Addison-Wesley, Reading, MA; Avramov, L., Vigué, M., Hochschild homology criteria for smoothness (1992) Duke Math. J, 65, pp. 17-25
- Campillo, A., Guccione, J., Guccione, J.J., Redondo, M.J., Solotar, A., Villamayor, O., Hochschild, A., Homology criterium for smoothness (1994) Comment. Math. Helv, 69, pp. 163-168. , BACH
- Burghelea, D., Vigué, M., Cyclic homology of commutative algebras I (1988) Lecture Notes in Mathematics, 1318, pp. 51-72. , Springer, Berlin
- Doi, Y., Homological coalgebra (1981) J. Math. Soc. Japan, 33 (1), pp. 31-50
- Farinati, M., On the derived invariance of cohomology theories for coalgebras http://xxx.lanl.gov/e-print/math/0006060; Farinati, M.A., Solotar, A.L., Morita-Takeuchi equivalence, cohomology of coalgebras and Azumaya coalgebras (1998) Rings, Hopf Algebras and Brauer Groups, Lecture Notes Series, 197, pp. 119-146. , S. caenepeel, A. Verschoren (Eds.), Marcel Dekker, New York
- Farinati, M., Solotar, A., Extensions of cocommutative coalgebras and a Hochschild-Kostant-Rosenberg Theorem Comm. Algebra, , to appear
- Farinati, M., Solotar, A., Cyclic homology of coalgebras (2000) Lecture Notes in Pure and Applied Mathematics, 208, pp. 105-130. , Hopf Algebras and Quantum Groups, Marcel Dekker, New York
- Kunz, E.K., Kähler Differentials (1986) Advanced Lectures in Mathematics, , Vieweg, Braunschweig
- Matsumura, H., Commutative Algebra (1980) Mathematics Lecture Notes Series, , 2nd Edition, Benjamin, New York
- Sweedler, M., Hopf Algebras (1969) Mathematics Lecture Notes Series, , Benjamin, New York
- Takeuchi, M., Formal schemes over fields (1977) Comm. Algebra, 5 (14), pp. 1483-1528
- Tate, J., On the homology of noetherian rings and of local rings (1957) Illinois J. Math, 1, pp. 14-27
Citas:
---------- APA ----------
Farinati, M.A. & Solotar, A.
(2002)
. Smoothness of coalgebras and higher degrees of Hoch. Journal of Pure and Applied Algebra, 169(2-3), 201-214.
http://dx.doi.org/10.1016/S0022-4049(01)00066-4---------- CHICAGO ----------
Farinati, M.A., Solotar, A.
"Smoothness of coalgebras and higher degrees of Hoch"
. Journal of Pure and Applied Algebra 169, no. 2-3
(2002) : 201-214.
http://dx.doi.org/10.1016/S0022-4049(01)00066-4---------- MLA ----------
Farinati, M.A., Solotar, A.
"Smoothness of coalgebras and higher degrees of Hoch"
. Journal of Pure and Applied Algebra, vol. 169, no. 2-3, 2002, pp. 201-214.
http://dx.doi.org/10.1016/S0022-4049(01)00066-4---------- VANCOUVER ----------
Farinati, M.A., Solotar, A. Smoothness of coalgebras and higher degrees of Hoch. J. Pure Appl. Algebra. 2002;169(2-3):201-214.
http://dx.doi.org/10.1016/S0022-4049(01)00066-4