Artículo

El editor permite incluir el artículo en su versión final en nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work we take under consideration the Cauchy problem for the Schrödinger-Poisson type equation i t u=- x2 u+V (u) u-f (∫u∫2) u, where f represents a local nonlinear interaction (we take into account both attractive and repulsive models) and V is taken as a suitable solution of the Poisson equation V=12 ∫x∫ (C- ∫u∫2), C Cc∞ is the doping profile or impurities. We show that this problem is locally well posed in the weighted Sobolev spaces Hs { Hs (R): (1+ x2) 12 ∫∫2 <∞} with s1, which means the local existence, uniqueness, and continuity of the solution with respect to the initial data. Moreover, under suitable assumptions on the local interaction, we show the existence of global solutions. Finally, we establish that for s1 local in time and space, smoothing effects are present in the solution; more precisely, in this problem there is locally a gain of half a derivative. © 2007 American Institute of Physics.

Registro:

Documento: Artículo
Título:Well posedness and smoothing effect of Schrödinger-Poisson equation
Autor:De Leo, M.; Rial, D.
Filiación:Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Argentina
Año:2007
Volumen:48
Número:9
DOI: http://dx.doi.org/10.1063/1.2776844
Título revista:Journal of Mathematical Physics
Título revista abreviado:J. Math. Phys.
ISSN:00222488
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00222488_v48_n9_p_DeLeo.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222488_v48_n9_p_DeLeo

Referencias:

  • Bao, W., Mauser, N.J., Stimming, H.P., Effective one particle quantum dynamics of electrons: A numerical study of the Schrödinger-Poisson- Xα model (2003) Commun. Math. Sci., 1, pp. 809-828
  • Ben-Artzi, M., Klainerman, S., Decay and regularity for the Schrödinger equation (1992) J. Anal. Math., 58, pp. 25-37
  • Cazenave, T., (2003) Semilinear Schrödinger Equations, , American Mathematical Society, Providence, RI
  • Coiffman, R.R., Meyer, Y., (1979) Euclidean Harmonic Analysis, 779, pp. 106-122. , Lecture Notes in Mathematics Vol. Springer, New York
  • Constantin, P., Saut, J.-C., Local smoothing properties of dispersive equations (1989) J. Am. Math. Soc., 1, pp. 413-446
  • Dirac, P.A.M., Note on exchange phenomena in the Thomas-Fermi atom (1931) Proc. Cambridge Philos. Soc., 26, pp. 376-385
  • Folland, G., (1995) Introduction to Partial Differential Equations, , 2nd ed. (Princeton University Press, Princeton, NJ
  • Glassey, R., On the blowing up of solutions to the Cauchy problem for the nonlinear Schrödinger equation (1977) J. Math. Phys., 18, pp. 1794-1797
  • Kato, T., (1983) Studies in Applied Mathematics, 8, pp. 93-128. , Advances in Mathematics Supplementary Studies Vol. Academic Press, New York
  • Kenig, C., Ponce, G., Vega, L., Oscillatory integrals and regularity of dispersive equations (1991) Indiana Univ. Math. J., 40, pp. 33-69
  • Kohn, W., Sham, L.J., Self-consistent equations including exchange and correlation effects (1965) Phys. Rev., 140, pp. 1133-1138
  • Markowich, P.A., Ringhofer, C.A., Schmeiser, C., (1990) Semiconductor Equations, , Springer, Vienna
  • Mauser, N.J., The Schrödinger-Poisson- Xα model (2001) Appl. Math. Lett., 14, pp. 759-763
  • Ponce, G., On the global well-posedness of the Benjamin-Ono equation (1991) Diff. Integral Eq., 4, pp. 527-542
  • Rauch, J., http://www.math.lsa.umich.edu/~rauch/courses.html, Lectures on nonlinear geometric optics, Department of Mathematics, University of Michigan; Rial, D., Weak solutions for the derivative Schrödinger equation (2002) Non Linear Analysis, 49, pp. 149-158
  • Sjölin, P., Regularity of solutions to the Schrödinger equations (1987) Duke Math. J., 55, pp. 699-715
  • Slater, J.C., A simplification of the Hartree-Fock method (1951) Phys. Rev., 81, pp. 385-390
  • Steinrück, H., One-dimensional Wigner-Poisson problem and its relation to the Schrödinger-Poisson problem (1991) SIAM J. Math. Anal., 22, pp. 957-972
  • Stimming, H.P., The IVP for the Schrödinger-Poisson- Xα equation in one dimension (2005) Math. Models Meth. Appl. Sci., pp. 1169-1180
  • Strichartz, R.S., Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations (1977) Duke Math. J., 44, pp. 705-714
  • Vega, L., The Schrödinger equation: Pointwise convergence to the initial date (1988) Proc. Am. Math. Soc., 102, pp. 874-878
  • Weinstein, M., Nonlinear Schrödinger equations and sharp interpolation estimates (1983) Commun. Math. Phys., 87, pp. 567-576
  • Zhang, P., Zheng, Y., Mauser, N.J., The limit from the Schrödinger-Poisson to the Vlasov-Poisson equations with general data in one dimension (2002) Commun. Pure Appl. Math., 55, pp. 0582-0632

Citas:

---------- APA ----------
De Leo, M. & Rial, D. (2007) . Well posedness and smoothing effect of Schrödinger-Poisson equation. Journal of Mathematical Physics, 48(9).
http://dx.doi.org/10.1063/1.2776844
---------- CHICAGO ----------
De Leo, M., Rial, D. "Well posedness and smoothing effect of Schrödinger-Poisson equation" . Journal of Mathematical Physics 48, no. 9 (2007).
http://dx.doi.org/10.1063/1.2776844
---------- MLA ----------
De Leo, M., Rial, D. "Well posedness and smoothing effect of Schrödinger-Poisson equation" . Journal of Mathematical Physics, vol. 48, no. 9, 2007.
http://dx.doi.org/10.1063/1.2776844
---------- VANCOUVER ----------
De Leo, M., Rial, D. Well posedness and smoothing effect of Schrödinger-Poisson equation. J. Math. Phys. 2007;48(9).
http://dx.doi.org/10.1063/1.2776844