Artículo

El editor permite incluir el artículo en su versión final en nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A method is developed to solve Laplace's equation with Dirichlet's or Neumann's conditions in plane, single-connected regions bounded by arbitrary single curves. It is based on the existence of a conformal transformation that reduces the original problem to another whose solution is known. The main advantage of the method is that it does not require the knowledge of the transformation itself, so it is applicable even when no transformation is available. The solution and its higher-order derivatives are expressed in terms of explicit quadratures easy to evaluate numerically or even analytically. © 1990 American Institute of Physics.

Registro:

Documento: Artículo
Título:Solution of Laplace's equation in plane single-connected regions bounded by arbitrary single curves
Autor:Minotti, F.; Moreno, C.
Filiación:Consejo Nacional de Investigaciones Científicas y Técnicas
Laboratorio de Física del Plasma, Facultad de Ciencias Exactas y Naturales, Pab. I, 1428 Buenos Aires, Argentina
Año:1990
Volumen:31
Número:8
Página de inicio:1914
Página de fin:1918
DOI: http://dx.doi.org/10.1063/1.528690
Título revista:Journal of Mathematical Physics
ISSN:00222488
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00222488_v31_n8_p1914_Minotti.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222488_v31_n8_p1914_Minotti

Referencias:

  • Morse, P.M., Feshbach, H., (1953) Methods of Theoretical Physics, , (McGraw‐Hill, New York)
  • Weinberger, H.F., (1965) Introduction to Partial Differential Equations with Methods of Complex Variables and Integral Transforms, , (Blaisdell, New York)
  • Jeans, J.H., (1958) Mathematical Theory of Electricity and Magnetism, , (Cambridge U.P, Cambridge), 5th ed
  • Menikoff, R., Zemach, C., (1980) J. Comput. Phys., 36, p. 366
  • Meiron, D.I., Orszag, S.A., Israeli, M., (1981) J. Comput. Phys., 40, p. 345
  • Hostens, R., De Mey, G., (1978) Comput. Phys. Commun., 16, p. 5
  • Kober, H., (1957) Dictionary of Conformal Representations, , (Dover, New York)
  • Sneddon, I.N., (1972) The Use of Integral Transforms, , (McGraw‐Hill, New York)

Citas:

---------- APA ----------
Minotti, F. & Moreno, C. (1990) . Solution of Laplace's equation in plane single-connected regions bounded by arbitrary single curves. Journal of Mathematical Physics, 31(8), 1914-1918.
http://dx.doi.org/10.1063/1.528690
---------- CHICAGO ----------
Minotti, F., Moreno, C. "Solution of Laplace's equation in plane single-connected regions bounded by arbitrary single curves" . Journal of Mathematical Physics 31, no. 8 (1990) : 1914-1918.
http://dx.doi.org/10.1063/1.528690
---------- MLA ----------
Minotti, F., Moreno, C. "Solution of Laplace's equation in plane single-connected regions bounded by arbitrary single curves" . Journal of Mathematical Physics, vol. 31, no. 8, 1990, pp. 1914-1918.
http://dx.doi.org/10.1063/1.528690
---------- VANCOUVER ----------
Minotti, F., Moreno, C. Solution of Laplace's equation in plane single-connected regions bounded by arbitrary single curves. 1990;31(8):1914-1918.
http://dx.doi.org/10.1063/1.528690