Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study the extendibility of integral vector-valued polynomials on Banach spaces. We prove that an X-valued Pietsch-integral polynomial on E extends to an X-valued Pietsch-integral polynomial on any space F containing E, with the same integral norm. This is not the case for Grothendieck-integral polynomials: they do not always extend to X-valued Grothendieck-integral polynomials. However, they are extendible to X-valued polynomials. The Aron-Berner extension of an integral polynomial is also studied. A canonical integral representation is given for domains not containing ℓ1. © 2004 Elsevier Inc. All rights reserved.

Registro:

Documento: Artículo
Título:Extension of vector-valued integral polynomials
Autor:Carando, D.; Lassalle, S.
Filiación:Departamento de Matemática, Universidad de San Andrés, Vito Dumas 284, Victoria, Buenos Aires, Argentina
Departamento de Matemática - Pab I, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:Extendibility; Integral polynomials
Año:2005
Volumen:307
Número:1
Página de inicio:77
Página de fin:85
DOI: http://dx.doi.org/10.1016/j.jmaa.2004.10.020
Título revista:Journal of Mathematical Analysis and Applications
Título revista abreviado:J. Math. Anal. Appl.
ISSN:0022247X
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_0022247X_v307_n1_p77_Carando.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v307_n1_p77_Carando

Referencias:

  • Alencar, R., Multilinear mappings of nuclear and integral type (1985) Proc. Amer. Math. Soc., 94, pp. 33-38
  • Alencar, R., On reflexivity and basis for P(mE) (1985) Proc. Roy. Irish Acad. Sect. A, 85, pp. 131-138
  • Arens, R., The adjoint of a bilinear operation (1951) Proc. Amer. Math. Soc., 2, pp. 839-848
  • Aron, R., Berner, P., A Hahn-Banach extension theorem for analytic mappings (1978) Bull. Soc. Math. France, 106, pp. 3-24
  • Carando, D., Extendible polynomials on Banach spaces (1999) J. Math. Anal. Appl., 233, pp. 359-372
  • Carando, D., Dimant, V., Duality of spaces of nuclear and integral polynomials (2000) J. Math. Anal. Appl., 241, pp. 107-121
  • Carando, D., Lassalle, S., E′ and its relation with vector-valued functions on E (2004) Ark. Mat., 42, pp. 283-300
  • Carando, D., Zalduendo, I., A Hahn-Banach theorem for integral polynomials (1999) Proc. Amer. Math. Soc., 127, pp. 241-250
  • Castillo, J., García, R., Jaramillo, J.A., Extension of bilinear forms on Banach spaces (2001) Proc. Amer. Math. Soc., 129, pp. 3647-3656
  • Cilia, R., D'Anna, M., Gutiérrez, J.M., Polynomial characterization of L∞-spaces (2002) J. Math. Anal. Appl., 275, pp. 900-912
  • Cilia, R., Gutiérrez, J.M., Nuclear and integral polynomials (2004) J. Austral. Math. Soc., 76, pp. 269-280
  • Davie, A.M., Gamelin, T.W., A theorem of polynomial-star approximation (1989) Trans. Amer. Math. Soc., 106, pp. 351-358
  • Defant, A., Floret, K., Tensor Norms and Operator Ideals (1993) Math. Studies, 176. , Amsterdam: North-Holland
  • Dineen, S., Complex Analysis in Locally Convex Spaces (1981) Math. Studies, 57. , Amsterdam: North-Holland
  • Diestel, J., Uhl, J.J., Vector Measures (1977) Math. Surveys Monogr., 15. , Providence, RI: Amer. Math. Soc
  • Floret, K., Natural norms on symmetric tensor products of normed spaces (1997) Note Mat., 17, pp. 153-188
  • Galindo, P., García, D., Maestre, M., Mujica, J., Extension of multilinear mappings on Banach spaces (1994) Studia Math, 108, pp. 55-76
  • González, M., Gutiérrez, J.M., Extension and lifting of polynomials (2003) Arch. Math., 81, pp. 431-438
  • Haydon, R., Some more characterizations of Banach spaces containing ℓ1 (1976) Math. Proc. Cambridge Philos. Soc., 80, pp. 269-276
  • Kirwan, P., Ryan, R., Extendibility of homogeneous polynomials on Banach spaces (1998) Proc. Amer. Math. Soc., 126, pp. 1023-1029
  • Mazet, P., A Hahn-Banach theorem for quadratic forms (2000) Proc. Roy. Irish Acad. Sect. A, 100, pp. 177-182
  • Mujica, J., Complex Analysis in Banach Spaces (1986) Math. Studies, 120. , Amsterdam: North-Holland
  • Ryan, R., Applications of topological tensor products to infinite dimensional holomorphy (1980), PhD thesis, University College, Dublin; Ryan, R., Introduction to Tensor Products of Banach Spaces (2002) Springer Monogr. Math., , London: Springer-Verlag
  • Villanueva, I., Integral mappings between Banach spaces (2003) J. Math. Anal. Appl., 279, pp. 56-70
  • Zalduendo, I., (1998) Extending Polynomials, , Universidad Complutense de Madrid: Publ. Dep. Análisis Mat

Citas:

---------- APA ----------
Carando, D. & Lassalle, S. (2005) . Extension of vector-valued integral polynomials. Journal of Mathematical Analysis and Applications, 307(1), 77-85.
http://dx.doi.org/10.1016/j.jmaa.2004.10.020
---------- CHICAGO ----------
Carando, D., Lassalle, S. "Extension of vector-valued integral polynomials" . Journal of Mathematical Analysis and Applications 307, no. 1 (2005) : 77-85.
http://dx.doi.org/10.1016/j.jmaa.2004.10.020
---------- MLA ----------
Carando, D., Lassalle, S. "Extension of vector-valued integral polynomials" . Journal of Mathematical Analysis and Applications, vol. 307, no. 1, 2005, pp. 77-85.
http://dx.doi.org/10.1016/j.jmaa.2004.10.020
---------- VANCOUVER ----------
Carando, D., Lassalle, S. Extension of vector-valued integral polynomials. J. Math. Anal. Appl. 2005;307(1):77-85.
http://dx.doi.org/10.1016/j.jmaa.2004.10.020