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Abstract

We study the extendibility of integral vector-valued polynomials on Banach spaces. We pro
anX-valued Pietsch-integral polynomial onE extends to anX-valued Pietsch-integral polynomial o
any spaceF containingE, with the same integral norm. This is not the case for Grothendieck-int
polynomials: they do not always extend toX-valued Grothendieck-integral polynomials. Howev
they are extendible toX-valued polynomials. The Aron–Berner extension of an integral polyno
is also studied. A canonical integral representation is given for domains not containing�1.
 2004 Elsevier Inc. All rights reserved.
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Introduction

In this note we study extendibility properties of Pietsch and Grothendieck integral
nomials. Generally, polynomials on Banach spaces do not extend to larger spaces,
the scalar valued case [20]. In other words, there is no Hahn–Banach extension th
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for polynomials. However, since the symmetric injective tensor product respects subs
scalar-valued integral polynomials are extendible. For vector-valued polynomials, the
“extendible” needs to be properly defined. We say that a polynomialP : E → X is ex-
tendible if for any Banach spaceF containingE, there existsP̃ : F → X extendingP

([20], see also [5]). The problem of extending polynomials (and multilinear mappings
been studied by many authors (see, for example, [4,8,9,17,18,21,26]). It is impor
remark that in the definition, the extension ofP must beX-valued. Another consideratio
to take into account regarding extendibility is the preservation of the norm. Even
there are extensions ofP , the norm ofP may not be preserved by any of these extensi
Moreover, the infimum of the extension norms might be strictly greater than the no
‖P ‖ (see [21] for a concrete finite-dimensional example). Since we focus on Grothen
and Pietsch integral polynomials, we discuss the preservation of the respective i
norms.

In order to extend holomorphic functions of bounded type, Aron and Berner show
[4] how to extend a continuous homogeneous polynomial defined on a Banach spaceE to a
polynomial onE′′, the bidual ofE (see also [3]). ForX-valued mappings, the Aron–Bern
extension may take values inX′′ (and therefore it would not be actually an extension).
important feature of the Aron–Berner extension (even when it is notX-valued) is that it
preserves the norm [5,12,17].

The paper is organized as follows. In the first section we state some general
about integral polynomials. In the second one, we prove that a Pietsch-integral p
mial P : E → X extends to anX-valued Pietsch-integral polynomial over anyF ⊃ E,
with the same integral norm. This is not the case for Grothendieck-integral polynom
if a Grothendieck-integral polynomialP : E → X extends to anX-valued Grothendieck
integral polynomial over anyF ⊃ E, P turns out to be Pietsch-integral. What is possi
to obtain is anX′′-valued Grothendieck-integral extension ofP , but this is not an exten
sion in the proper sense. However, we show that Grothendieck-integral polynomia
extendible: they extend to (non-integral)X-valued polynomials. The third section dea
with the Aron–Berner extension of a (Pietsch or Grothendieck) integral polynomia
show that this extension is also integral, with the same integral norm. We also pre
canonical expression for this extension in the case thatE does not contain an isomorph
copy of�1.

We refer to [14,22] for notation and results regarding polynomials in general, to
16,23,24] for tensor products of Banach spaces and to [1,2,13,15] for integral ope
polynomials and multilinear mappings.

1. Definitions and general results

Throughout,E, F , andX will be Banach spaces. The space of continuousn-homoge-
neous polynomials fromE into X will be denoted byP(nE,X). This is a Banach spac
endowed with the norm‖P ‖ = sup{‖P(x)‖: ‖x‖ � 1}. If P ∈P(nE,X), P̌ : E × · · · × E

→ X andLP : ⊗n
s E → X will denote, respectively, the continuous symmetricn-linear
form and the linear operator associated withP .
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Following [20], we will say that a polynomialP : E → X is extendibleif for any Banach
spaceF containingE there existsP̃ ∈ P(nF,X) an extension ofP . We will denote the
space of all such polynomials byPe(

nE,X). For P ∈ Pe(
nE,X), its extendible norm is

given by

‖P ‖e = inf{c > 0: for all F ⊇ E there is an extension ofP to F with norm� c}.
In order to study extendibility, the natural (isometric) inclusionsE ↪→ C(BE′ ,w∗) and

E ↪→ �∞(BE′) are useful. It was shown in [5, Theorem 3.1] that a polynomialP : E → X

is extendible if and only ifP extends toC(BE′ ,w∗), wheneverX is aCl space. This is no
true for arbitrary spaces: without conditions onX, a polynomialP : E → X is extendible
if and only if P extends to�∞(BE′) [5, Theorem 3.2].

If (Ω,µ) is a finite measure space,L∞(Ω,µ) has the metric extension property, whi
means thatL∞(Ω,µ) is complemented in any larger space with a norm-one projec
Consequently, any polynomial defined on this space is extendible and the extendib
usual norms coincide. This fact and [5, Theorem 3.4] enable us to ensure that any p
mial that factors through someL∞ is extendible.

A polynomialP ∈ P(nE,X) is Pietsch-integral(P-integral for short) if there exists
regularX-valued Borel measureG, of bounded variation on(BE′ ,w∗) such that

P(x) =
∫

BE′

γ (x)n dG(γ )

for all x ∈ E. The space ofn-homogeneous Pietsch-integral polynomials is denote
PPI(

nE,X) and the integral norm of a polynomialP ∈ PPI(
nE,X) is defined as

‖P ‖PI = inf
{|G|(BE′)

}
,

where the infimum is taken over all measuresG representingP .
The definition ofGrothendieck-integral(G-integral for short) polynomials is analogou

but taking the measureG to beX′′-valued. The space of Grothendieck-integral polyno
als is denoted byPGI(

nE,X).
Following [16], we will write εs for the injective symmetric tensor norm on

⊗n
s E.

Consequently,
⊗n

s,εs
E will stand for the symmetric tensor product

⊗n
s E endowed with

the injective symmetric tensor norm.
In [10, Proposition 2.5] and [25, Corollary 2.8], the authors show that there is a c

spondence between (G and P)-integral polynomials fromE to X and (G and P)-integra
operators from

⊗n
s,εs

E to X. In [7, Proposition 2.10] we show that this corresponde
is actually an isometric isomorphism for P-integral polynomials. Next proposition s
the analogous isometric result for G-integral polynomials. Although it could be ded
from [7], we give a direct proof for the sake of completeness.

Proposition 1. The spacesPGI(
nE,X) andLGI(

⊗n
s,εs

E,X) are isometrically isomorphic

Proof. For P ∈ PGI(
nE,X), let G be aX′′-valued measure onBE′ representingP and⊗
setµ = |G|. DefineR : n
s,εs

E → L∞(µ) by R(x(n)) = x̂n, wherex̂n(γ ) = γ (x)n for
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γ ∈ BE′ . Clearly,‖R‖ � 1. If LP is the linearization ofP , we have the following dia
gram:

⊗n
s,εs

E

R

LP
X X′′

L∞(µ)
j

L1(µ),

S

(1)

wherej is the natural inclusion andS(f ) = ∫
BE′ f dG for f ∈ L1(µ). This factorization

shows thatLP is G-integral. Since‖j‖ � |G|, ‖R‖ � 1, ‖S‖ � 1 and this holds for any
measureG representingP , we have‖LP ‖GI � ‖P ‖GI.

Conversely, suppose thatT ∈ LGI(
⊗n

s,εs
E,X). Then,T admits a factorization as th

one in diagram (1), withT instead ofLP , and with‖S‖ = 1, ‖j‖ = ‖T ‖GI and‖R‖ = 1.
We chooseG ∈ M(BE′ ;X′′) a representing measure for the integral operatorS ◦ j , so

that S ◦ j (f ) = ∫
BE′ f dG and |G| = ‖S ◦ j‖GI � ‖T ‖GI. Therefore,P, the polynomial

associated toT , can be written as

P(x) =
∫

BE′

γ (x)n dG(γ ).

This means thatP is G-integral and‖P ‖GI � |G| � ‖T ‖GI + ε. This holds for anyε > 0
and the isometry follows. �

Any G-integral operatorT : E → X identifies with a linear form onE ⊗ε X′ with
norm‖T ‖GI (in fact, this can be taken as the definition of G-integral operators). Now
previous proposition allows us to identify a G-integral polynomial with a linear form
(
⊗n

s,εs
E ⊗ε X′) with norm‖P ‖GI. On the other hand, if we consider G-integral mappi

with range in a dual spaceY ′, there is an isometric isomorphism betweenLGI(E,Y ′) and
(E ⊗ε Y )′ [13, Proposition 10.1]. From Proposition 1 we extend this ton-homogeneous
G-integral polynomials. Since G-integral operators with range in a dual space are au
ically P-integral [15, Corollary VIII.2.10], we have:

Corollary 2.

(a) PGI(
nE,X) ↪→ (

⊗n
s,εs

E ⊗ε X′)′ isometrically.
(b) PGI(

nE,Y ′) = PPI(
nE,Y ′) = (

⊗n
s,εs

E ⊗ε Y )′ isometrically.

In [10], integral polynomials are defined as those which can be identified with co
uous linear functionals on

⊗n
s,εs

E ⊗ε X′. Therefore, we have shown that the definiti
in [10] is equivalent to the one given above for G-integral polynomials and also tha
G-integral norm of the polynomial coincides with the norm of the linear functional.

In [11, Theorem 3], the authors show that wheneverE′ has the approximation prop
erty and the Radon–Nikodým property, the spaces of Grothendieck integral and n
n-homogeneous polynomials fromE to any Banach space are isomorphic. Propositio

allows us to show that the isomorphism is in fact an isometry. Indeed, it follows from
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[7, Proposition 2.10], Proposition 1, and [15, Theorem VIII.4.6] that ifE′ has the approx
imation property and the Radon–Nikodým property, then the spaces ofn-homogeneous
Grothendieck and Pietsch integral polynomials are isometrically isomorphic. Now, t
sult follows from [6, Theorem 1.4]. So, we have:

Corollary 3. Let E be a Banach space such thatE′ has the approximation property an
the Radon–Nikodým property. Then, for any Banach spaceF , the spacesPGI(

nE,F ) and
PN(nE,F ) are isometrically isomorphic.

2. Extension of integral polynomials

We have mentioned thatL∞ spaces play a crucial role when extending polynomi
Therefore, we start this section by showing a natural example of integral polynom
these spaces.

Lemma 4. Let (Ω,�,µ) be a finite measure space andG : � → X a vector measure
which is absolutely continuous with respect toµ. Then

P0(f ) =
∫

Ω

f n(w)dG(w) (2)

is a Pietsch-integraln-homogeneous polynomial onL∞(Ω,µ) with ‖P0‖PI � |G|.
Also, for any compact Hausdorff spaceK and any regular, Borel measureG on K , the

polynomial onC(K) given in(2) is Piestch-integral with‖P0‖PI � |G|.

Proof. For the first statement, by [7, Proposition 2.10] it is enough to prove thatLP0, the
linearization ofP0, belongs toLPI(

⊗n
s,εs

L∞(µ),X).

Define the linear operatorR : ⊗n
s,εs

L∞(µ) → L∞(µ) by R(f (n)) = f n. As a con-
sequence of Maharam’s theorem [13, B.7],R has norm one. Now, if we defineS(f ) =∫
Ω

f dG for all f ∈ L1(µ) and if j : L∞(µ) → L1(µ) is the natural inclusion, we hav
the commutative diagram:

⊗n
s,εs

L∞(µ)

R

LP0
X

L∞(µ)
j

L1(µ).

S

Therefore,LP0 is P-integral. Since‖j‖ � |G|, by the isometry given in [7, Propos
tion 2.10], we have‖P0‖PI = ‖LP0‖PI � |G|.

The statement forC(K) can be proved analogously. Also, it can be seen as a co
quence of the first result. Indeed, just takeµ = |G| and factorP0 via the natural mapping
C(K) → L∞(µ). �

A scalar-valued integral polynomialP on a Banach spaceE can be extended to an

larger spaceF , in such a way that the extensioñP is also integral andP andP̃ have the
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same integral norm. This follows from the fact that the symmetric injective tensor pr
respects subspaces and the Hahn–Banach theorem applied to the linearization ofP (see,
for example, [8]). Next proposition states a similar result for Pietsch-integral vector-v
polynomials.

Theorem 5. LetF be a Banach space containingE. AnyP ∈ PPI(
nE,X) can be extende

to P̃ ∈PPI(
nF,X), with ‖P ‖PI = ‖P̃ ‖PI. As a consequence,‖P ‖e � ‖P ‖PI.

Proof. Let P ∈ PPI(
nE,X), let G be a measure representingP and considerµ = |G|.

We write P = P0 ◦ i, where i : E → L∞(BE′ ,µ) is the natural inclusion andP0 :
L∞(BE′ ,µ) → X is the polynomial,

P0(f ) =
∫

Ω

f n(w)dG(w).

SinceL∞(BE′ ,µ) has the metric extension property, we haveĩ : F → L∞(BE′ ,µ) a norm
one extension ofi. Therefore,P̃ = P0 ◦ ĩ extendsP . By Lemma 4,P0 is P-integral and
thereforeP̃ is P-integral, with‖P̃ ‖PI � ‖P0‖PI‖ĩ‖n � |G|. This holds for any measureG
representingP and then‖P̃‖PI � ‖P ‖PI. The other inequality holds sincẽP is an extension
on P . The inequality‖P ‖e � ‖P ‖PI is a straightforward consequence of the definition
the extendible norm and the inequality‖P̃ ‖ � ‖P̃ ‖PI = ‖P ‖PI. �

If E = C(K) or E = L∞(µ), Grothendieck and Pietsch integral operators onE coin-
cide [13, D.6]. We show that the result remains true for homogeneous polynomials.

Remark 6. Let P be in P(nE,X), for E = C(K) or E = L∞(µ). Then, P is
Grothendieck-integral if and only ifP is Pietsch-integral.

Proof. SinceL∞(µ) is isomorphic toC(K) for some compact Hausdorff spaceK , we
assumeE = C(K). The symmetric multilinear mappinǧP associated to a G-integral pol
nomial P is also G-integral and defines a G-integral linear operatorL

P̌
on the (full)

injective tensor product (see [25]). Then-fold injective tensor product ofC(K) is iso-
morphic toC(K × · · · × K). Thus,L

P̌
is P-integral and so isP . �

Any G-integral polynomialP : E → X is a P-integral polynomial considered with va
ues inX′′. Theorem 5 gives us a P-integral extension ofP , P̃ with values inX′′, which is
also a G-integralX′′-valued extension ofP . Another way to obtain this extension is to ide
tify P with a continuous linear functional on

⊗n
s,εs

E⊗ε X′, and extend it to
⊗n

s,εs
F ⊗ε X′

by Hahn–Banach theorem. This extension identifies with a G-integral polynomial froF

to X′′ extendingP (and which is, by the way, also P-integral).
A natural question arises: is it possible to obtain a Grothendieck-integralX-valued ex-

tension ofP to any larger space? We answer that question by the negative: suppose
extendP to a G-integral polynomial onC(BE′). By Remark 6, this extension is P-integr
and therefore, so isP . Since there are G-integral polynomials that are not P-integral

[1] and [13, Proposition D9]), the conclusion follows.
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Consequently, a G-integral polynomialP : E → X cannot in general be extended to
X-valued integral polynomial. However G-integral polynomials are extendible: they
be extended to (non-integral)X-valued polynomials to any larger space.

Proposition 7. Any Grothendieck-integral polynomialP : E → X is extendible(to X-
valued polynomials) and‖P ‖e � ‖P ‖GI.

Proof. If P : E → X is a G-integral polynomial, by Proposition 1,Lp : ⊗n
s,εs

E → X is
a G-integral operator with the same integral norm. Consider the inclusionE ⊂ �∞(BE′).
SinceLP is G-integral, it is absolutely 2-summing with‖LP ‖2−sum� ‖LP ‖GI. We have
that

⊗n
s,εs

E is isometrically a subspace of
⊗n

s,εs
�∞(I ) and thereforeLP extends to an

(absolutely 2-summing) operatorL̃ : ⊗n
s,εs

�∞(I ) → X with ‖L̃‖ � ‖LP ‖2−sum� ‖P ‖GI.

We can defineP̃ : �∞(I ) → X as P̃ (a) = L̃(a(n)). P̃ extendsP and‖P̃ ‖ � ‖P ‖GI. An
appeal to [5] completes the proof.�

3. The Aron–Berner extension of an integral polynomial

In [7] it is shown that the Aron–Berner extension of a P-integral polynomialP : E → X

is a P-integral polynomial fromE′′ to X, with the same integral norm. This stateme
involves two facts. On the one hand, the Aron–Berner extension isX-valued. On the othe
hand, it is integral when considered with range inX. This is not immediate, since P-integr
polynomials are not a regular ideal. An analogous result for G-integral polynomials c
obtained from the Pietsch-integral case. However, for G-integral polynomials is ea
give a direct proof. We denote byAB(P ) the Aron–Berner extension ofP .

Proposition 8. If P ∈ PGI(
nE,X), then AB(P ) ∈PGI(

nE′′,X) and‖AB(P )‖GI = ‖P ‖GI.

Proof. Let P : E → X be a G-integral polynomial. By Proposition 1, its linearizat
LP : ⊗n

s,εs
E → X is G-integral and has the same integral norm. Thus,L′′

P is a G-integral
operator fromE′′ to X′′ (with the same norm). Moreover, sinceLP is weakly compact,L′′

P

takes its values inX and, by [13, 10.2]L′′
P is G-integral fromE′′ to X, with the same norm

Now, the linearization ofAB(P ) is L′′
P ◦ i, where the mapi : ⊗n

s,εs
E′′ ↪→ (

⊗n
s,εs

E)′′ is
the (norm one) inclusion via the identification given in [8]. Therefore,AB(P ) is G-integral
from E′′ to X with the same G-integral norm asP . �

We turn our attention to the validity of a canonical integral representation for the A
Berner extension of an integral polynomial. IfP : E → X is an integral polynomial andG
is a representing measure forP (X or X′′-valued), we want to know if the Aron–Bern
extension ofP can be written as

AB(P )(z) =
∫

BE′

z(γ )n dG(γ ). (3)

For scalar-valued polynomials, the validity of this expression is equivalent toE not con-

taining an isomorphic copy of�1. We show that this remains true for vector-valued poly-
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measureµ, so expression (3) cannot hold.

Theorem 9. SupposeE does not contain isomorphic copies of�1. If P is a (Grothendieck
or Pietsch)-integral polynomial with representing measureG, then

AB(P )(z) =
∫

BE′

z(γ )n dG(γ ).

Proof. If E does not contain�1, the functionγ �→ z(γ ) is Borel-measurable on(BE′ ,w∗)
and we can define the polynomial

Q(z) =
∫

BE′

z(γ )n dG(γ ).

Let us see thatQ = AB(P ). The symmetricn-linear mapping associated toQ is given by

Q̌(z1, . . . , zn) =
∫

BE′

z1(γ ) · · · zn(γ ) dG(γ ).

We are done if we show that for fixedz1, . . . , zn−1, the mappingz �→ Q̌(z1, . . . , zn−1, z)

is w∗ to w∗ continuous fromE′′ to X′′. We fix ϕ ∈ X′.

Q̌(z1, . . . , zn−1, z)(ϕ) =
∫

BE′

z(γ )z1(γ ) · · · zn−1(γ ) dϕ ◦ G(γ ) =
∫

BE′

z(γ ) dµ,

whereµ is the scalar measure given bydµ = z1(γ ) · · · zn−1(γ ) dϕ ◦ G(γ ). The measure
µ can be written as a linear combination of probability measures. SinceE does not con-
tain �1, eachz ∈ E′′ satisfies the barycentric calculus [19]. Therefore, ifγ0 ∈ E′ is the
corresponding linear combination of the barycenters of the probability measures, w∫
BE′ z(γ ) dµ = z(γ0), which isw∗-continuous inz. �

If E contains an isomorphic copy of�1, expression (3) does not hold. However,
Proposition 8 (and the analogous result for Pietsch-integral polynomials in [7])AB(P ) is
an integral polynomial ifP is. It is natural to ask ifAB(P ) admits an integral expression i
volving the measures that representP . In [8] such an expression is shown for scalar-valu
polynomials. The same expression holds for vector-valued polynomials, and the pr
it is essentially contained in the proof of the previous theorem. IfP :E → X is an integral
polynomial with representationP(x) = ∫

BE′ γ (x)n dG(γ ), we defineS :L1(|G|) → E′ as

S(f )(x) = ∫
BE′ f (γ )γ (x) d|G|(γ ). With this notation, we have:

Proposition 10. The Aron–Berner extension ofP may be written as

AB(P )(z) =
∫ (

S′(z)(γ )
)n

dG(γ ).
BE′
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Note that Proposition 8 can be seen as a corollary of the previous proposition, Lem
and the ideal property of integral polynomials.
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