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Abstract

We study the extendibility of integral vector-valued polynomials on Banach spaces. We prove that
an X -valued Pietsch-integral polynomial @ghextends to aiX -valued Pietsch-integral polynomial on
any spacer containingE, with the same integral norm. This is not the case for Grothendieck-integral
polynomials: they do not always extend Xevalued Grothendieck-integral polynomials. However,
they are extendible t&-valued polynomials. The Aron—-Berner extension of an integral polynomial
is also studied. A canonical integral representation is given for domains not contéjning
0 2004 Elsevier Inc. All rights reserved.
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Introduction

In this note we study extendibility properties of Pietsch and Grothendieck integral poly-
nomials. Generally, polynomials on Banach spaces do not extend to larger spaces, even in
the scalar valued case [20]. In other words, there is no Hahn—Banach extension theorem
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for polynomials. However, since the symmetric injective tensor product respects subspaces,
scalar-valued integral polynomials are extendible. For vector-valued polynomials, the word
“extendible” needs to be properly defined. We say that a polynomiakEk — X is ex-
tendible if for any Banach spaceé containingE, there existsP : F — X extendingP

([20], see also [5]). The problem of extending polynomials (and multilinear mappings) has
been studied by many authors (see, for example, [4,8,9,17,18,21,26]). It is important to
remark that in the definition, the extension®fmust beX-valued. Another consideration

to take into account regarding extendibility is the preservation of the norm. Even when
there are extensions @&f, the norm ofP may not be preserved by any of these extensions.
Moreover, the infimum of the extension norms might be strictly greater than the norm of
IP|l (see [21] for a concrete finite-dimensional example). Since we focus on Grothendieck
and Pietsch integral polynomials, we discuss the preservation of the respective integral
norms.

In order to extend holomorphic functions of bounded type, Aron and Berner showed in
[4] how to extend a continuous homogeneous polynomial defined on a Banachistmaae
polynomial onE”, the bidual ofE (see also [3]). Fok -valued mappings, the Aron—Berner
extension may take values i’ (and therefore it would not be actually an extension). An
important feature of the Aron—Berner extension (even when it isxrgalued) is that it
preserves the norm [5,12,17].

The paper is organized as follows. In the first section we state some general results
about integral polynomials. In the second one, we prove that a Pietsch-integral polyno-
mial P : E — X extends to anY-valued Pietsch-integral polynomial over afy> E,
with the same integral norm. This is not the case for Grothendieck-integral polynomials:
if a Grothendieck-integral polynomidt : E — X extends to ark-valued Grothendieck-
integral polynomial over any O E, P turns out to be Pietsch-integral. What is possible
to obtain is anX”-valued Grothendieck-integral extension ®f but this is not an exten-
sion in the proper sense. However, we show that Grothendieck-integral polynomials are
extendible: they extend to (non-integr&f}valued polynomials. The third section deals
with the Aron—-Berner extension of a (Pietsch or Grothendieck) integral polynomial. We
show that this extension is also integral, with the same integral norm. We also present a
canonical expression for this extension in the case Ehdbes not contain an isomorphic
copy of¢.

We refer to [14,22] for notation and results regarding polynomials in general, to [13,
16,23,24] for tensor products of Banach spaces and to [1,2,13,15] for integral operators,
polynomials and multilinear mappings.

1. Definitions and general results

Throughout,E, F, andX will be Banach spaces. The space of continuoimmoge-
neous polynomials fronk into X will be denoted byP(* E, X). This is a Banach space
endowed with the normiP|| = sup(| P(x)|: lIx|| <1}. If P e P('E, X), P:E x ---x E
— X andLp : @, E — X will denote, respectively, the continuous symmetritinear
form and the linear operator associated with
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Following [20], we will say that a polynomiat : E — X is extendiblef for any Banach
spaceF containingE there existsP € P("F, X) an extension of?. We will denote the
space of all such polynomials B9, (" E, X). For P € P.("E, X), its extendible norm is
given by

IP]le =inf{c > 0: forall F D E there is an extension dtf to F with norm< c}.

In order to study extendibility, the natural (isometric) inclusidghs> C(Bg/, w*) and
E — Lo (Bg) are useful. It was shown in [5, Theorem 3.1] that a polynorRialE — X
is extendible if and only ifP extends taC(Bg/, w*), wheneverX is aC; space. This is not
true for arbitrary spaces: without conditions &pa polynomialP : E — X is extendible
if and only if P extends t&(Bg’) [5, Theorem 3.2].

If (£2, n) is a finite measure spacky (£2, 1) has the metric extension property, which
means that. ., (£2, 1) is complemented in any larger space with a norm-one projection.
Consequently, any polynomial defined on this space is extendible and the extendible and
usual norms coincide. This fact and [5, Theorem 3.4] enable us to ensure that any polyno-
mial that factors through some,, is extendible.

A polynomial P € P("E, X) is Pietsch-integralP-integral for short) if there exists a
regularX-valued Borel measur€, of bounded variation o0Bg:, w*) such that

P(x)= / y(®)"dG(y)

B

for all x € E. The space ofi-homogeneous Pietsch-integral polynomials is denoted by
Ppi("E, X) and the integral norm of a polynomi&l € Pp|("E, X) is defined as

I1Pllpi=inf{|G|(Be},

where the infimum is taken over all measuéesepresenting’.

The definition ofGrothendieck-integralG-integral for short) polynomials is analogous,
but taking the measur@ to be X”-valued. The space of Grothendieck-integral polynomi-
als is denoted b¥g|("E, X).

Following [16], we will write ¢, for the injective symmetric tensor norm @®); E.
Consequently® . E will stand for the symmetric tensor produ@®; E endowed with
the injective symmetric tensor norm.

In [10, Proposition 2.5] and [25, Corollary 2.8], the authors show that there is a corre-
spondence between (G and P)-integral polynomials fiome X and (G and P)-integral
operators fron@fj’& E to X. In [7, Proposition 2.10] we show that this correspondence
is actually an isometric isomorphism for P-integral polynomials. Next proposition states
the analogous isometric result for G-integral polynomials. Although it could be deduced
from [7], we give a direct proof for the sake of completeness.

Proposition 1. The space®g (" E, X) and£G|(®§',6J E, X) are isometrically isomorphic.

Proof. For P € Pg|("E, X), let G be aX”-valued measure oBg/ representing? and
setu = |G|. DefineR : ®?’€S E — Loo(p) by R(x™) = 2", wherex”(y) = y (x)" for
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y € Bgr. Clearly, |R|| < 1. If Lp is the linearization ofP, we have the following dia-
gram:

Qe E Le X X" (1)
Rl /
Loo(1t) ——= L1(),

wherej is the natural inclusion anfl( f) = fBE, fdG for f € L1(u). This factorization
shows thatL p is G-integral. Sincd|j|| < |G|, [IR|l <1, ||S]| < 1 and this holds for any
measures representing?, we havel|Lp|c < || PllGi-

Conversely, suppose thate Lci(Q) ., E, X). Then,T admits a factorization as the
one in diagram (1), witll" instead ofL p, and with||S|| =1, ||j|l = |I T llei and||R| = 1.

We choose5 € M(Bg; X”) a representing measure for the integral operétor, so
thatSo j(f) = fBF/ fdG and|G| = ||S o jllcl < IIT |lci- Therefore,P, the polynomial
associated t@’, can be written as

P(x)= / y ()" dG(y).

B

This means thaP is G-integral and|P|ic| < |G| < ||IT |lgI + €. This holds for any > 0
and the isometry follows. O

Any G-integral operatofl : E — X identifies with a linear form ot ®. X’ with
norm ||T || (in fact, this can be taken as the definition of G-integral operators). Now, the
previous proposition allows us to identify a G-integral polynomial with a linear form on
(®’;,ES E ®. X’) with norm|| P||gi. On the other hand, if we consider G-integral mappings
with range in a dual spac¥, there is an isometric isomorphism betwe&s (E, Y’) and
(E ®. Y)' [13, Proposition 10.1]. From Proposition 1 we extend thisfoomogeneous
G-integral polynomials. Since G-integral operators with range in a dual space are automat-
ically P-integral [15, Corollary VIII.2.10], we have:

Corallary 2.

@ Pai("E, X) = (X, E ® X') isometrically.
(b) Pei("E,Y) =PpI("E,Y') = (Q)., E ®c ¥)' isometrically.

In [10], integral polynomials are defined as those which can be identified with contin-
uous linear functionals o®f§,ev E ®. X’'. Therefore, we have shown that the definition
in [10] is equivalent to the one given above for G-integral polynomials and also that the
G-integral norm of the polynomial coincides with the norm of the linear functional.

In [11, Theorem 3], the authors show that whenekéhas the approximation prop-
erty and the Radon—Nikodym property, the spaces of Grothendieck integral and nuclear
n-homogeneous polynomials frof to any Banach space are isomorphic. Proposition 1
allows us to show that the isomorphism is in fact an isometry. Indeed, it follows from
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[7, Proposition 2.10], Proposition 1, and [15, Theorem VI11.4.6] thdf'ihas the approx-
imation property and the Radon—Nikodym property, then the spaceshofmogeneous
Grothendieck and Pietsch integral polynomials are isometrically isomorphic. Now, the re-
sult follows from [6, Theorem 1.4]. So, we have:

Corollary 3. Let E be a Banach space such that has the approximation property and
the Radon—Nikodym property. Then, for any Banach sggdee space®g ("E, F) and
Pn("E, F) are isometrically isomorphic.

2. Extension of integral polynomials

We have mentioned thdt., spaces play a crucial role when extending polynomials.
Therefore, we start this section by showing a natural example of integral polynomial on
these spaces.

Lemma 4. Let (£2, X, u) be a finite measure space add: ¥ — X a vector measure
which is absolutely continuous with respecitoThen

Po(f) :/f”(w)dG(w) 2
2

is a Pietsch-integrak-homogeneous polynomial dny (£2, w) with || Pollpi < |G].
Also, for any compact Hausdorff spakeand any regular, Borel measur@ on K, the
polynomial onC (K) given in(2) is Piestch-integral with| Py||p; < |G|.

Proof. For the first statement, by [7, Proposition 2.10] it is enough to provelthgtthe
linearization ofPy, belongs t0£1p|(®;‘)ev Loo(p), X).

Define the linear operataR : @ . Loo(it) = Loo(1t) by R(f™) = f*. As a con-
sequence of Maharam’s theorem [13, B.R]has norm one. Now, if we defing(f) =
fﬂ fdG forall f e Li(w) and if j : Loo() — L1(w) is the natural inclusion, we have
the commutative diagram:

Lp
®;l,€j Loo(t) ———X
R S

Loo(p) —L—= L ().

Therefore,L p, is P-integral. Since|j|| < |G|, by the isometry given in [7, Proposi-
tion 2.10], we havel Pollpi = IL pllp1 < |G

The statement fo€ (K) can be proved analogously. Also, it can be seen as a conse-
guence of the first result. Indeed, just take= |G| and factorPyp via the natural mapping
C(K)— Loo(p). O

A scalar-valued integral polynomid! on a Banach spacg can be extended to any
larger spacdr, in such a way that the extensidghis also integral and® and P have the
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same integral norm. This follows from the fact that the symmetric injective tensor product
respects subspaces and the Hahn—-Banach theorem applied to the lineariz&ti¢seef

for example, [8]). Next proposition states a similar result for Pietsch-integral vector-valued
polynomials.

Theorem 5. Let F be a Banach space containiig Any P € Ppi(" E, X) can be extended
to P € Ppi("F, X), with || P|lp1 = || P||pi. As & consequencgP || < || P|lpi.

Proof. Let P € Ppi("E, X), let G be a measure representiitgand consideu = |G].
We write P = Py o i, wherei : E — Ly (Bg, ) is the natural inclusion and :
Lo (Bgr, u) — X is the polynomial,

Po(f) = f F1(w)dG (w).
2

SinceLs(Bg, 1) has the metric extension property, we have” — Lo (Bg, 1) a norm
one extension of. Therefore,P = Pyoi extendsP. By Lemma 4,P; is P-integral and
thereforeP is P-integral, with|| P||p; < || Pollpilli]I” < |G|. This holds for any measui@
representing® and then| P||p| < || P ||pi. The other inequality holds sindis an extension
on P. The inequality| P||l. < || P|lps is a straightforward consequence of the definition of
the extendible norm and the inequaljt? || < || Pllpi = | Pllpl. O

If E=C(K) or E =Ly (n), Grothendieck and Pietsch integral operatorstoooin-
cide [13, D.6]. We show that the result remains true for homogeneous polynomials.

Remark 6. Let P be in P("E,X), for E = C(K) or E = Ly(u). Then, P is
Grothendieck-integral if and only i is Pietsch-integral.

Proof. Since Ly (u) is isomorphic toC(K) for some compact Hausdorff spa&e we
assumer = C(K). The symmetric multilinear mappiné associated to a G-integral poly-
nomial P is also G-integral and defines a G-integral linear operétgron the (full)
injective tensor product (see [25]). Thefold injective tensor product of (K) is iso-
morphic toC(K x --- x K). Thus,L 5 is P-integraland so i®. O

Any G-integral polynomialP : E — X is a P-integral polynomial considered with val-
ues inX”. Theorem 5 gives us a P-integral extensiorPofP with values inX”, which is
also a G-integrak”-valued extension of . Another way to obtain this extension is to iden-
tify P with a continuous linear functional @®; . E ®. X', and extend it tqx) . F ®e X'
by Hahn—Banach theorem. This extension identifies with a G-integral polynomialfrom
to X” extendingP (and which is, by the way, also P-integral).

A natural question arises: is it possible to obtain a Grothendieck-int&gralued ex-
tension ofP to any larger space? We answer that question by the negative: suppose we can
extendP to a G-integral polynomial 0@’ (Bg/). By Remark 6, this extension is P-integral
and therefore, so i®. Since there are G-integral polynomials that are not P-integral (see
[1] and [13, Proposition D9]), the conclusion follows.
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Consequently, a G-integral polynomill: E — X cannot in general be extended to an
X-valued integral polynomial. However G-integral polynomials are extendible: they can
be extended to (non-integra¥)-valued polynomials to any larger space.

Proposition 7. Any Grothendieck-integral polynomiat : E — X is extendible(to X-
valued polynomialsand | Pl < || PllGI-

Proof. If P: E — X is a G-integral polynomial, by Proposition 1,, : Q. E — X is
a G-integral operator with the same integral norm. Consider the inclugigre . (Bg’).
SinceL p is G-integral, it is absolutely 2-summing withL p||2—sum < || L pllc1- We have
that @y . E is isometrically a subspace @ . £~ (1) and thereforel p extends to an

(absolutely 2-summing) operatar: Q) , £oo(I) = X with | L|| < [ Lpll2-sum< [ Pllci-
We can defineP : ¢o(I) = X as P(a) = L(a™). P extendsP and | P| < ||P|lci. An
appeal to [5] completes the proofO

3. The Aron—Berner extension of an integral polynomial

In [7]itis shown that the Aron—Berner extension of a P-integral polyno®ial — X
is a P-integral polynomial front” to X, with the same integral norm. This statement
involves two facts. On the one hand, the Aron—Berner extensi&nvalued. On the other
hand, itis integral when considered with rang&inThis is notimmediate, since P-integral
polynomials are not a regular ideal. An analogous result for G-integral polynomials can be
obtained from the Pietsch-integral case. However, for G-integral polynomials is easy to
give a direct proof. We denote AB(P) the Aron—Berner extension af.

Proposition 8. If P € Pg|("E, X), then ABP) € Pgi("E”, X) and ||AB(P)||ci = || P ||GI-

Proof. Let P : E — X be a G-integral polynomial. By Proposition 1, its linearization
Lp: Q. E— X is G-integral and has the same integral norm. Tisjs a G-integral
operator frome” to X” (with the same norm). Moreover, sinfe is weakly compact..’;
takes its values iX and, by [13, 10.2L%, is G-integral fromE” to X, with the same norm.
Now, the linearization oAB(P) is L', o i, where the map : Q; . E” — (Q ., E)" is
the (norm one) inclusion via the identification given in [8]. Thereféw®(P) is G-integral
from E” to X with the same G-integral normds 0O

We turn our attention to the validity of a canonical integral representation for the Aron—
Berner extension of an integral polynomial Af: E — X is an integral polynomial an¢
is a representing measure fBr(X or X”-valued), we want to know if the Aron—Berner
extension ofP can be written as

AB(P)(z) = / ()" dG(y). 3
BE/

For scalar-valued polynomials, the validity of this expression is equivaleAtrnot con-
taining an isomorphic copy df;. We show that this remains true for vector-valued poly-
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nomials. In fact, ifE contains¢1, the functiony — z(y) is not u-measurable for some
measuregu, So expression (3) cannot hold.

Theorem 9. Suppose: does not contain isomorphic copieséf If P is a (Grothendieck
or Pietsch-integral polynomial with representing measuge then

AB(P)(2) = / 2 dG ).

By

Proof. If E does not contaiidy, the functiony — z(y) is Borel-measurable ofBg/, w*)
and we can define the polynomial

00) = f 2 dG ().
BE/

Let us see tha = AB(P). The symmetria:-linear mapping associated @ is given by

Q(Zl,u-,zn):/11(7/)"'1;1(7/)dG(J/)-

B

We are done if we show that for fixed, ..., z,—1, the mapping; — Q(zl, ey Zn_1,2)
is w* to w* continuous fromE” to X”. We fix ¢ € X'.

0@z1,... 2n-1,2)(p) = f 2(P)za(y) -+ zn-1(y)dp o G(y) = / z(y)du,

BE/ BE/
wherepu is the scalar measure given By = z1(y) - - - z,—1(y) do o G(y). The measure
w can be written as a linear combination of probability measures. Sindees not con-
tain ¢1, eachz € E” satisfies the barycentric calculus [19]. Thereforeydfe E’ is the
corresponding linear combination of the barycenters of the probability measures, we have
fBE, z2(y)du = z(y0), Which isw*-continuous ing. O

If E contains an isomorphic copy @f;, expression (3) does not hold. However, by
Proposition 8 (and the analogous result for Pietsch-integral polynomials i) is
an integral polynomial ifP is. It is natural to ask iAB(P) admits an integral expression in-
volving the measures that represéntin [8] such an expression is shown for scalar-valued
polynomials. The same expression holds for vector-valued polynomials, and the proof of
it is essentially contained in the proof of the previous theorem..IE — X is an integral
polynomial with representatioR (x) = fBE/ y(x)"dG(y), we defineS: L1(|G|) - E’ as

S(fHx) = fBE/ f()yx)d|G|(y). With this notation, we have:

Proposition 10. The Aron—-Berner extension 8f may be written as

AB(P)(z) = / (5'@())" dG ().

B
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Note that Proposition 8 can be seen as a corollary of the previous proposition, Lemma 4,
and the ideal property of integral polynomials.
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