Artículo

El editor permite incluir el artículo en su versión final en nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL2 (L = Cl, Br, I, CH 3) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH3)2 within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr 2 and HgI2 when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible. © 2011 American Institute of Physics.

Registro:

Documento: Artículo
Título:Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods
Autor:Arcisauskaite, V.; Melo, J.I.; Hemmingsen, L.; Sauer, S.P.A.
Filiación:Department of Basic Sciences and Environment, Faculty of LIFE Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
CONICET, Argentina
Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
Palabras clave:Atomic numbers; Basis sets; Coulomb potential; Exchange-correlations; Experimental data; Functionals; Gaussians; Linear response; NMR shielding; Nuclear magnetic resonance shielding; Point nuclei; Relativistic effects; Shielding constants; Small components; Spin densities; Spin orbits; Two-component; Zeroth-order regular approximations; Atoms; Bromine; Chemical compounds; Chemical shift; Chlorine; Electric fields; Iodine; Mercury (metal); Resonance; Magnetic shielding; mercury; mercury derivative; article; chemistry; comparative study; computer analysis; methodology; nuclear magnetic resonance spectroscopy; quantum theory; Computing Methodologies; Magnetic Resonance Spectroscopy; Mercury Compounds; Mercury Isotopes; Quantum Theory
Año:2011
Volumen:135
Número:4
DOI: http://dx.doi.org/10.1063/1.3608153
Título revista:Journal of Chemical Physics
Título revista abreviado:J Chem Phys
ISSN:00219606
CODEN:JCPSA
CAS:mercury, 14302-87-5, 7439-97-6; Mercury Compounds; Mercury Isotopes
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00219606_v135_n4_p_Arcisauskaite.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219606_v135_n4_p_Arcisauskaite

Referencias:

  • Utschig, L.M., Bryson, J.W., Ohalloran, T.V., (1995) Science, 268, p. 380. , 10.1126/science.7716541
  • Iranzo, O., Thulstrup, P.W., Ryu, S.-B., Hemmingsen, L., Pecoraro, V.L., The application of199Hg NMR and199mHg perturbed angular correlation (PAC) spectroscopy to define the biological chemistry of HgII: A case study with designed two- and three-stranded coiled coils (2007) Chemistry - A European Journal, 13 (33), pp. 9178-9190. , DOI 10.1002/chem.200701208
  • Uczkowski, M., Stachura, M., Schirf, V., Demeler, B., Hemmingsen, L., Pecoraro, V.L., (2008) Inorg. Chem., 47, p. 10875. , 10.1021/ic8009817
  • Visscher, L., Enevoldsen, T., Saue, T., Jensen, H.J.Aa., Oddershede, J., (1999) J. Comput. Chem., 20, p. 1262. , 10.1002/(SI CI)1096-98 7X(1999 09)20:1212 62::AID-JC C63.0.CO;2-H
  • Gomez, S.S., Romero, R.H., Aucar, G.A., Fully relativistic calculation of nuclear magnetic shieldings and indirect nuclear spin-spin couplings in group-15 and -16 hydrides (2002) Journal of Chemical Physics, 117 (17), pp. 7942-7946. , DOI 10.1063/1.1510731
  • Vaara, J., Pyykk, P., (2003) J. Chem. Phys., 118, p. 2973. , 10.1063/1.1545718
  • Lantto, P., Romero, R.H., Gomez, S.S., Aucar, G.A., Vaara, J., Relativistic heavy-atom effects on heavy-atom nuclear shieldings (2006) Journal of Chemical Physics, 125 (18), p. 184113. , DOI 10.1063/1.2378737
  • Ilia, M., Saue, T., Enevoldsen, T., Jensen, H.J.Aa., (2009) J. Chem. Phys., 131, p. 124119. , 10.1063/1.3240198
  • Grant, I.P., Quiney, H.M., (2000) Int. J. Quantum Chem., 80, p. 283. , 10.1002/1097-461X(2000)80:3283::AID-QUA23.0.CO;2-L
  • Visscher, L., Visser, O., Aerts, P.J.C., Merenga, H., Nieuwpoort, W.C., (1994) Comput. Phys. Commun., 81, p. 120. , 10.1016/0010-4655(94)90115-5
  • Cheng, L., Xiao, Y., Liu, W., (2009) J. Chem. Phys., 131, p. 244113. , 10.1063/1.3283036
  • Komorovsky, S., Repisky, M., Malkina, O.L., Malkin, V.G., Malkin Ondik, I., Kaupp, M., A fully relativistic method for calculation of nuclear magnetic shielding tensors with a restricted magnetically balanced basis in the framework of the matrix Dirac-Kohn-Sham equation (2008) Journal of Chemical Physics, 128 (10), p. 104101. , DOI 10.1063/1.2837472
  • Komorovsk, S., Repisk, M., Malkina, O.L., Malkin, V.G., (2010) J. Chem. Phys., 132, p. 154101. , 10.1063/1.3359849
  • Chang, C., Pelissier, M., Durand, P., (1986) Phys. Scr., 34, p. 394. , 10.1088/0031-8949/34/5/007
  • Van Lenthe, E., Baerends, E.J., Snijders, J.G., (1993) J. Chem. Phys., 99, p. 4597. , 10.1063/1.466059
  • Van Lenthe, E., Baerends, E.J., Snijders, J.G., (1994) J. Chem. Phys., 101, p. 9783. , 10.1063/1.467943
  • Van Lenthe, E., Snijders, J.G., Baerends, E.J., (1996) J. Chem. Phys., 105, p. 6505. , 10.1063/1.472460
  • Wolff, S.K., Ziegler, T., Van Lenthe, E., Baerends, E.J., (1999) J. Chem. Phys., 110, p. 7689. , 10.1063/1.478680
  • Ilia, M., Saue, T., (2007) J. Chem. Phys., 126, p. 064102. , 10.1063/1.2436882
  • Sun, Q., Liu, W., Xiao, Y., Cheng, L., (2009) J. Chem. Phys., 131, p. 081101. , 10.1063/1.3216471
  • Kudo, K., Fukui, H., Calculation of nuclear magnetic shieldings using an analytically differentiated relativistic shielding formula (2005) Journal of Chemical Physics, 123 (11), pp. 1-12. , DOI 10.1063/1.2032408, 114102
  • Kudo, K., Fukui, H., Erratum: Calculation of nuclear magnetic shieldings using an analytically differentiated relativistic shielding formula (Journal of Chemical Physics (2005) 123 (114102) (2006) Journal of Chemical Physics, 124 (20), p. 209901. , DOI 10.1063/1.2199527
  • Fukuda, R., Hada, M., Nakatsuji, H., (2003) J. Chem. Phys., 118, p. 1015. , 10.1063/1.1528933
  • Fukuda, R., Hada, M., Nakatsuji, H., (2003) J. Chem. Phys., 118, p. 1027. , 10.1063/1.1528934
  • Seino, J., Hada, M., (2010) J. Chem. Phys., 132, p. 174105. , 10.1063/1.3413529
  • Melo, J.I., Ruiz De Azua, M.C., Giribet, C.G., Aucar, G.A., Romero, R.H., (2003) J. Chem. Phys., 118, p. 471. , 10.1063/1.1525808
  • Melo, J.I., Ruiz De Azua, M.C., Giribet, C.G., Aucar, G.A., Provasi, P.F., (2004) J. Chem. Phys., 121, p. 6798. , 10.1063/1.1787495
  • Manninen, P., Ruud, K., Lantto, P., Vaara, J., Leading-order relativistic effects on nuclear magnetic resonance shielding tensors (2005) Journal of Chemical Physics, 122 (11), pp. 1-8. , DOI 10.1063/1.1861872, 114107
  • Manninen, P., Ruud, K., Lantto, P., Vaara, J., (2006) J. Chem. Phys., 124, p. 149901. , 10.1063/1.2181967
  • Kutzelnigg, W., (1999) J. Comput. Chem., 20, p. 1199. , 10.1002/(SICI)1 096-987X(1999 09)20:121199::A ID-JCC23.0.CO;2-8
  • Nakatsuji, H., Hada, M., Kaneko, H., Ballard, C.C., (1996) Chem. Phys. Lett., 255, p. 195. , 10.1016/0009-2614(96)00335-1
  • Taylor, R.E., Carver, C.T., Larsen, R.E., Dmitrenko, O., Bai, S., Dybowski, C., (2009) J. Mol. Struct., 930, p. 99. , 10.1016/j.molstruc.2009.04.045
  • Ishikawa, Y., Nakajima, T., Hada, M., Nakatsuji, H., (1998) Chem. Phys. Lett., 283, p. 119. , 10.1016/S0009-2614(97)01307-9
  • Melo, J.I., Maldonado, A., Aucar, G.A., (2011) Theor. Chem. Acc., 129, p. 483. , 10.1007/s00214-010-0886-4
  • Visscher, L., Jensen, H.J.Aa., Saue, T., Bast, R., Dubbilard, S., Dyall, K.G., Ekstrm, U., Sikkema, J., (2008), http://dirac.chem.sdu.dk, DIRAC, a relativistic ab initio electronic structure program, Release DIRAC08 , written by, with new contributions from, (see); Saue, T., Visscher, L., Jensen, H.J.Aa., Bast, R., Dyall, K.G., Ekstrm, U., Eliav, E., Yamamoto, S., http://dirac.chem.vu.nl, DIRAC, a relativistic ab initio electronic structure program, Release DIRAC10 (2010), written by, with contributions from, (see); (2005), http://www.daltonprogram.org/; Baerends, E.J., Velde, B.T., Rauk, A., Ziegler, T., http://www.scm.com, Amsterdam Density Functional ADF, Release ADF 2009.01 (2009), written by, and collaborators (Amsterdam) and, and collaborators (Calgary) (see); Hansen, A.E., Bouman, T.D., (1985) J. Chem. Phys., 82, p. 5035. , 10.1063/1.448625
  • Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J., (1994) J. Phys. Chem., 98, p. 11623. , 10.1021/j100096a001
  • Becke, A.D., (1993) J. Chem. Phys., 98, p. 5648. , 10.1063/1.464913
  • Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865. , 10.1103/PhysRevLett.77.3865
  • Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 78, p. 1396. , 10.1103/PhysRevLett.78.1396
  • Perdew, J.P., Burke, K., Wang, Y., (1996) Phys. Rev. B, 54, p. 16533. , 10.1103/PhysRevB.54.16533
  • Adamo, C., Barone, V.J., (1999) J. Chem. Phys., 100, p. 6158. , 10.1063/1.478522
  • Becke, A.D., (1988) Phys. Rev. A, 38, p. 3098. , 10.1103/PhysRevA.38.3098
  • Perdew, J.P., (1986) Phys. Rev. B, 33, p. 8822. , 10.1103/PhysRevB.33.8822
  • Jokisaari, J., Jarvinen, S., Autschbach, J., Ziegler, T., 199Hg shielding tensor in methylmercury halides: NMR experiments and ZORA DFT calculations (2002) Journal of Physical Chemistry A, 106 (40), pp. 9313-9318. , DOI 10.1021/jp025797q
  • Visscher, L., Approximate molecular relativistic Dirac-Coulomb calculations using a simple Coulombic correction (1997) Theoretical Chemistry Accounts, 98 (2-3), pp. 68-70. , DOI 10.1007/s002140050280
  • Dyall, K.G., Fgri, Jr.K., (1990) Chem. Phys. Lett., 174, p. 25. , 10.1016/0009-2614(90)85321-3
  • Stanton, R.E., Havriliak, S., (1984) J. Chem. Phys., 81, p. 1910. , 10.1063/1.447865
  • Pecul, M., Saue, T., Ruud, K., Rizzo, A., (2004) J. Chem. Phys., 121, p. 3051. , 10.1063/1.1771635
  • Visscher, L., Magnetic Balance and Explicit Diamagnetic Expressions for Nuclear Magnetic Resonance Shielding Tensors (2005) Advances in Quantum Chemistry, 48, p. 19. , DOI 10.1016/S0065-3276(05)48019-3, PII S0065327605480193, Advances in Quantum Chemistry
  • Maldonado, A.F., Aucar, G.A., (2009) Phys. Chem. Chem. Phys., 11, p. 5615. , 10.1039/b820609k
  • Dyall, K.G., Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 5d elements Hf-Hg (2004) Theoretical Chemistry Accounts, 112 (5-6), pp. 403-409. , DOI 10.1007/s00214-004-0607-y
  • Dyall, K.G., Relativistic quadruple-zeta and revised triple-zeta and double-zeta basis sets for the 4p, 5p, and 6p elements (2006) Theoretical Chemistry Accounts, 115 (5), pp. 441-447. , DOI 10.1007/s00214-006-0126-0
  • Woon, D.E., Dunning, Jr.T.H., (1993) J. Chem. Phys., 98, p. 1358. , 10.1063/1.464303
  • Dunning, Jr.T.H., (1989) J. Chem. Phys., 90, p. 1007. , 10.1063/1.456153
  • Visscher, L., Dyall, K.G., Dirac-fock atomic electronic structure calculations using different nuclear charge distributions (1997) Atomic Data and Nuclear Data Tables, 67 (2), pp. 207-224. , DOI 10.1006/adnd.1997.0751, PII S0092640X97907518
  • Ruiz De Azua, M.C., Melo, J.I., Giribet, C.G., (2003) Mol. Phys., 101, p. 3103. , 10.1080/00268970310001617784
  • Zaccari, D.G., De Azua, M.C.R., Melo, J.I., Giribet, C.G., Formal relations connecting different approaches to calculate relativistic effects on molecular magnetic properties (2006) Journal of Chemical Physics, 124 (5), pp. 1-13. , DOI 10.1063/1.2162541, 054103
  • Schindler, M., Kutzelnigg, W., (1982) J. Chem. Phys., 76, p. 1919. , 10.1063/1.443165
  • Van Wllen, C., Kutzelnigg, W., (1996) J. Chem. Phys., 104, p. 2330. , 10.1063/1.470928
  • Lazzeretti, P., Malagoli, M., Zanasi, R., (1994) Chem. Phys. Lett., 220, p. 299. , 10.1016/0009-2614(94)00158-8
  • Ligabue, A., Sauer, S.P.A., Lazzeretti, P., (2003) J. Chem. Phys., 118, p. 6830. , 10.1063/1.1557918
  • Ligabue, A., Sauer, S.P.A., Lazzeretti, P., Gauge invariant calculations of nuclear magnetic shielding constants using the continuous transformation of the origin of the current density approach. II. Density functional and coupled cluster theory (2007) Journal of Chemical Physics, 126 (15), p. 154111. , DOI 10.1063/1.2721536
  • Helgaker, T., Jrgensen, P., (1991) J. Chem. Phys., 95, p. 2595. , 10.1063/1.460912
  • Wolff, S.K., Ziegler, T., Calculation of DFT-GIAO NMR shifts with the inclusion of spin-orbit coupling (1998) Journal of Chemical Physics, 109 (3), pp. 895-905. , DOI 10.1063/1.476630, PII S0021960698304274
  • Krykunov, M., Ziegler, T., Van Lenthe, E., (2009) J. Phys. Chem. A, 113, p. 11495. , 10.1021/jp901991s
  • Van Lenthe, E., Baerends, E.J., (2003) J. Comput. Chem., 24, p. 1142. , 10.1002/jcc.10255
  • Ditchfield, R., (1974) Mol. Phys., 27, p. 789. , 10.1080/00268977400100711
  • Wolinkski, K., Hinton, J.F., Pullay, P., (1990) J. Am. Chem. Soc., 112, p. 8251. , 10.1021/ja00179a005
  • Schreckenbach, G., Ziegler, T., (1995) J. Phys. Chem., 99, p. 606. , 10.1021/j100002a024
  • Kashiwabara, K., Konaka, S., Kimura, M., (1973) Bull. Chem. Soc. Jpn., 46, p. 410. , 10.1246/bcsj.46.410
  • Akishin, P.A., Spiridonov, V.P., Khodchenkov, A.N., (1959) Zh. Fiz. Khim., 33, p. 20
  • Spiridonov, V.P., Gershikov, A.G., Butayev, B.S., (1979) J. Mol. Struct., 52, p. 53. , 10.1016/0022-2860(79)80094-0
  • Kashiwabara, K., Konaka, S., Iijima, T., Kimura, M., (1973) Bull. Chem. Soc. Jpn., 46, p. 407. , 10.1246/bcsj.46.407
  • Kupka, T., (2008) Magn. Reson. Chem., 46, p. 851. , 10.1002/mrc.2270
  • Kupka, T., (2009) Magn. Reson. Chem., 47, p. 210. , 10.1002/mrc.2369
  • http://dx.doi.org/10.1063/1.3608153, See supplementary material at E-JCPSA6-135-029126 for additionally constructed ADF basis sets and calculated atomic charges and molecular quadrupole moments of linear HgL2 (L Cl, Br, I, CH3) compounds; Malkin, E., Malkin, I., Malkina, O.L., Malkin, V.G., Kaupp, M., (2006) Phys. Chem. Chem. Phys., 8, p. 4079. , 10.1039/b607044b
  • Malkin, E., Repisky, M., Komorovsky, S., MacH, P., Malkina, O.L., Malkin, V.G., (2011) J. Chem. Phys., 134, p. 044111. , 10.1063/1.3526263
  • Edlund, U., Lejon, T., Pyykk, P., Venkatachalam, T.K., Buncel, E., (1987) J. Am. Chem. Soc., 109, p. 5982. , 10.1021/ja00254a015
  • Jameson, C.J., Mason, J., (1987) Multinuclear NMR, , edited by J. Mason (Plenum, New York)
  • Kaupp, M., (2004) Theoretical and Computational Chemistry. Relativistic Electronic Structure Theory, Part 2: Applications, , edited by P. Schwerdtfeger, Vol. 14 (Elsevier B.V., Amsterdam)
  • Autschbach, J., The accuracy of hyperfine integrals in relativistic NMR computations based on the zeroth-order regular approximation (2004) Theoretical Chemistry Accounts, 112 (1), pp. 52-57. , DOI 10.1007/s00214-003-0561-0
  • Bhl, M., Kaupp, M., Malkina, O.L., Malkin, V.G., (1999) J. Comput. Chem., 20, p. 91. , 10.1002/(SI CI)1096-987X(199 90115)20:191::AID-JCC 103.0.CO;2-C
  • Sanders, L.K., Oldfield, E., Theoretical investigation of 19F NMR chemical shielding tensors in fluorobenzenes (2001) Journal of Physical Chemistry A, 105 (34), pp. 8098-8104. , DOI 10.1021/jp011114f
  • Auer, A.A., Gauss, J., Stanton, J.F., (2003) J. Chem. Phys., 118, p. 10407. , 10.1063/1.1574314
  • Tossell, J.A., Calculation of 17O NMR shieldings in molecular models for crystalline MO, M = Mg, Ca, Sr, and in models for alkaline earth silicates (2004) Physics and Chemistry of Minerals, 31 (1), pp. 41-44. , DOI 10.1007/s00269-003-0366-7
  • Sens, M.A., Wilson, N.K., Ellis, P.D., Odom, J.D., (1975) J. Magn. Reson., 19, p. 323
  • Peringer, P., (1980) Inorg. Chim. Acta, 39, p. 67. , 10.1016/S0020-1693(00)93636-3
  • Delnomdedieu, M., Georgescauld, D., Boudou, A., Dufourc, E.J., (1989) Bull. Magn. Reson., 11, p. 420
  • Persson, I., Sandstrm, M., Goggin, P.L., Mosset, A., (1985) J. Chem. Soc. Dalton Trans., p. 1597. , 10.1039/dt9850001597
  • Persson, I., Sandstrm, M., Goggin, P.L., (1987) Inorg. Chim. Acta, 129, p. 183. , 10.1016/S0020-1693(00)86662-1
  • Sandstrm, M., (1978) Acta Chem. Scand., Ser. A, 32, p. 627

Citas:

---------- APA ----------
Arcisauskaite, V., Melo, J.I., Hemmingsen, L. & Sauer, S.P.A. (2011) . Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods. Journal of Chemical Physics, 135(4).
http://dx.doi.org/10.1063/1.3608153
---------- CHICAGO ----------
Arcisauskaite, V., Melo, J.I., Hemmingsen, L., Sauer, S.P.A. "Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods" . Journal of Chemical Physics 135, no. 4 (2011).
http://dx.doi.org/10.1063/1.3608153
---------- MLA ----------
Arcisauskaite, V., Melo, J.I., Hemmingsen, L., Sauer, S.P.A. "Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods" . Journal of Chemical Physics, vol. 135, no. 4, 2011.
http://dx.doi.org/10.1063/1.3608153
---------- VANCOUVER ----------
Arcisauskaite, V., Melo, J.I., Hemmingsen, L., Sauer, S.P.A. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods. J Chem Phys. 2011;135(4).
http://dx.doi.org/10.1063/1.3608153