Artículo

El editor permite incluir el artículo en su versión final en nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A model is developed to describe the electrostatic boundary layer in a positively biased magnetic filter in filtered arcs with low collisionality. The set of equations used includes the electron momentum equation, with an anomalous collision term due to micro-instabilities leading to Bohm diffusion, electron mass conservation, and Poisson equation. Analytical solutions are obtained, valid for the regimes of interest, leading to an explicit expression to determine the electron density current to the filter wall as a function of the potential of the filter and the ratio of electron density at the plasma to that at the filter wall. Using a set of planar and cylindrical probes it is verified experimentally that the mentioned ratio of electron densities remains reasonably constant for different magnetic field values and probe bias, which allows to obtain a closed expression for the current. Comparisons are made with the experimentally determined current collected at different sections of a positively biased straight filter. © 2013 American Institute of Physics.

Registro:

Documento: Artículo
Título:Model of the boundary layer of a vacuum-arc magnetic filter
Autor:Minotti, F.; Giuliani, L.; Grondona, D.; Della Torre, H.; Kelly, H.
Filiación:Departamento de Física, FCEyN, CONICET-UBA, 1428 Buenos Aires, Argentina
Palabras clave:Collision term; Collisionality; Different-magnetic fields; Electron mass; Electron momentum equations; Filtered arc; Microinstabilities; Boundary layers; Carrier concentration; Electron density measurement; Electrons; Magnetic filters; Poisson equation; Probes; Wall function
Año:2013
Volumen:113
Número:11
DOI: http://dx.doi.org/10.1063/1.4795604
Título revista:Journal of Applied Physics
Título revista abreviado:J Appl Phys
ISSN:00218979
CODEN:JAPIA
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00218979_v113_n11_p_Minotti.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218979_v113_n11_p_Minotti

Referencias:

  • Storer, J., Galvin, J.E., Brown, I.G., Transport of vacuum arc plasma through straight and curved magnetic ducts (1989) J. Appl. Phys., 66 (11), pp. 5245-5250. , 10.1063/1.343711
  • Anders, S., Anders, A., Yu, K.M., Yao, X.Y., Brown, I.G., On the macroparticle flux from vacuum arc cathode spots (1993) IEEE Trans. Plasma Sci., 21, pp. 440-446. , 10.1109/27.249623
  • Kelly, H., Giuliani, L., Rausch, F., Characterization of the ion emission in a pulsed vacuum arc with an axial magnetic field (2003) J. Phys. D: Appl. Phys., 36, pp. 1980-1986. , 10.1088/0022-3727/36/16/309
  • Anders, A., (2008) Cathodic Arcs: From Fractal Spots to Energetic Condensation, , (Springer, New York), Cha
  • Anders, A., Anders, S., Brown, I.G., Effect of duct bias on transport of vacuum arc plasmas through curved magnetic filters (1994) J. Appl. Phys., 75, pp. 4900-4905. , 10.1063/1.355777
  • Keidar, M., Beilis, I.I., Plasma-wall sheath in a positive biased duct of the vacuum arc magnetic macroparticle filter (1998) Appl. Phys. Lett., 73, pp. 306-308. , 10.1063/1.121817
  • Zhang, S.T., Zhang, Y.C., Chu, P.K., Brown, I.G., Wall sheath and optimal bias in magnetic filters for vacuum arc plasma sources (2002) Appl. Phys. Lett., 80, pp. 365-367. , 10.1063/1.1431690
  • Minotti, F., Giuliani, L., Grondona, D., Torre, H.D., Kelly, H., Model with anomalous diffusion and friction for a vacuum-arc plasma jet in a straight magnetic filter (2011) IEEE Trans. Plasma Sci., 39, pp. 2014-2021. , 10.1109/TPS.2011.2163427
  • Martines, E., Zuin, M., Antoni, V., Cavazzana, R., Seriani, G., Spolaore, M., Nakashima, C., Experimental investigation of low-frequency waves propagating in a direct current planar magnetron plasma (2004) Phys. Plasmas, 11, pp. 1938-1946. , 10.1063/1.1695557
  • Bultinck, E., Mahieu, S., Depla, D., Bogaerts, A., The origin of Bohm diffusion, investigated by a comparison of different modeling methods (2010) J. Phys. D: Appl. Phys., 43, p. 292001. , 10.1088/0022-3727/43/29/292001
  • Hurtig, T., Brenning, N., Raadu, M.A., The role of high frequency oscillations in the penetration of plasma clouds across magnetic boundaries (2005) Phys. Plasmas, 12, p. 012308. , 10.1063/1.1812276
  • Krishan, S., Ravindra, M.P., Ion heating by the lower hybrid mode (1975) Phys. Rev. Lett., 34, pp. 938-940. , 10.1103/PhysRevLett.34.938
  • Bradley, J.W., Thompson, S., Gonzalvo, Y.A., Measurement of the plasma potential in a magnetron discharge and the prediction of the electron drift speeds (2001) Plasma Sources Sci. Technol., 10 (3), pp. 490-501. , 507. 10.1088/0963-0252/10/3/314
  • Giuliani, L., Grondona, D., Kelly, H., Minotti, F.O., On the plasma rotation in a straight magnetized filter of a pulsed vacuum arc (2007) J. Phys. D: Appl. Phys., 40, pp. 401-408. , 10.1088/0022-3727/40/2/017
  • Lam, S.H., Unified theory of the Langmuir probe in a collisionless plasma (1965) Phys. Fluids, 8, pp. 73-83. , 10.1063/1.1761103
  • Daybelge, U., Bein, B., Electric sheath between a metal surface and a magnetized plasma (1981) Phys. Fluids, 24, pp. 1190-1194. , 10.1063/1.863508

Citas:

---------- APA ----------
Minotti, F., Giuliani, L., Grondona, D., Della Torre, H. & Kelly, H. (2013) . Model of the boundary layer of a vacuum-arc magnetic filter. Journal of Applied Physics, 113(11).
http://dx.doi.org/10.1063/1.4795604
---------- CHICAGO ----------
Minotti, F., Giuliani, L., Grondona, D., Della Torre, H., Kelly, H. "Model of the boundary layer of a vacuum-arc magnetic filter" . Journal of Applied Physics 113, no. 11 (2013).
http://dx.doi.org/10.1063/1.4795604
---------- MLA ----------
Minotti, F., Giuliani, L., Grondona, D., Della Torre, H., Kelly, H. "Model of the boundary layer of a vacuum-arc magnetic filter" . Journal of Applied Physics, vol. 113, no. 11, 2013.
http://dx.doi.org/10.1063/1.4795604
---------- VANCOUVER ----------
Minotti, F., Giuliani, L., Grondona, D., Della Torre, H., Kelly, H. Model of the boundary layer of a vacuum-arc magnetic filter. J Appl Phys. 2013;113(11).
http://dx.doi.org/10.1063/1.4795604