Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study the asymptotic behavior for nonlocal diffusion models of the form ut = J * u - u in the whole RN or in a bounded smooth domain with Dirichlet or Neumann boundary conditions. In RN we obtain that the long time behavior of the solutions is determined by the behavior of the Fourier transform of J near the origin, which is linked to the behavior of J at infinity. If over(J, ̂) (ξ) = 1 - A | ξ |α + o (| ξ |α) (0 < α ≤ 2), the asymptotic behavior is the same as the one for solutions of the evolution given by the α / 2 fractional power of the Laplacian. In particular when the nonlocal diffusion is given by a compactly supported kernel the asymptotic behavior is the same as the one for the heat equation, which is yet a local model. Concerning the Dirichlet problem for the nonlocal model we prove that the asymptotic behavior is given by an exponential decay to zero at a rate given by the first eigenvalue of an associated eigenvalue problem with profile an eigenfunction of the first eigenvalue. Finally, we analyze the Neumann problem and find an exponential convergence to the mean value of the initial condition. © 2006 Elsevier SAS. All rights reserved.

Registro:

Documento: Artículo
Título:Asymptotic behavior for nonlocal diffusion equations
Autor:Chasseigne, E.; Chaves, M.; Rossi, J.D.
Filiación:Laboratoire de Mathématiques et Physique Théorique, Université de Tours, Parc de Grandmont, F-37200 Tours, France
Depto. Matemática Aplicada, Universidad de Salamanca, Salamanca, Spain
Instituto de Matemáticas y Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, Madrid, Spain
Depto. Matemática, FCEyN, Universidad de Buenos Aires, Argentina
Palabras clave:Dirichlet boundary conditions; Fractional Laplacian; Neumann boundary conditions; Nonlocal diffusion
Año:2006
Volumen:86
Número:3
Página de inicio:271
Página de fin:291
DOI: http://dx.doi.org/10.1016/j.matpur.2006.04.005
Título revista:Journal des Mathematiques Pures et Appliquees
Título revista abreviado:J. Math. Pures Appl.
ISSN:00217824
CODEN:JMPAA
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00217824_v86_n3_p271_Chasseigne.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00217824_v86_n3_p271_Chasseigne

Referencias:

  • Bates, P., Chmaj, A., An integrodifferential model for phase transitions: Stationary solutions in higher dimensions (1999) J. Statist. Phys., 95, pp. 1119-1139
  • Bates, P., Chmaj, A., A discrete convolution model for phase transitions (1999) Arch. Rat. Mech. Anal., 150, pp. 281-305
  • Bates, P., Fife, P., Ren, X., Wang, X., Travelling waves in a convolution model for phase transitions (1997) Arch. Rat. Mech. Anal., 138, pp. 105-136
  • Brezis, H., (1983) Analyse fonctionelle, , Masson, Paris
  • Brezis, H., Friedman, A., Nonlinear parabolic equations involving measures as initial conditions (1983) J. Math. Pures Appl., 62, pp. 73-97
  • Carrillo, C., Fife, P., Spatial effects in discrete generation population models (2005) J. Math. Biol., 50 (2), pp. 161-188
  • Cazenave, T., Haraux, A., An Introduction to Semilinear Evolution Equations (1998) Oxford Lecture Series in Mathematics and its Applications. Revised ed., 13. , Transl. by Yvan Martel., Clarendon Press, Oxford p. xiv
  • Chasseigne, E., Vazquez, J.L., Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singularities (2002) Arch. Ration. Mech. Anal., 164 (2), pp. 133-187
  • Chen, X., Existence, uniqueness and asymptotic stability of travelling waves in nonlocal evolution equations (1997) Adv. Differential Equations, 2, pp. 125-160
  • Cordoba, A., Cordoba, D., A maximum principle applied to quasi-geostrophic equations (2004) Commun. Math. Phys., 249, pp. 511-528
  • Duoandikoetxea, J., Zuazua, E., Moments, Dirac deltas and expansion of functions (1992) C. R. Acad. Sci. Paris Ser. I Math., 315 (6), pp. 693-698
  • Durrett, R., (1995) Probability: Theory and Examples, , Duxbury Press
  • Escobedo, M., Zuazua, E., Large time behavior for convection-diffusion equations in RN (1991) J. Funct. Anal., 100 (1), pp. 119-161
  • Feller, W., (1996) An Introduction to the Probability Theory and Its Application, vol. 2, , Wiley, New York
  • Fife, P., Some nonclassical trends in parabolic and parabolic-like evolutions (2003) Trends in Nonlinear Analysis, pp. 153-191. , Springer-Verlag, Berlin
  • Fife, P., Wang, X., A convolution model for interfacial motion: the generation and propagation of internal layers in higher space dimensions (1998) Adv. Differential Equations, 3 (1), pp. 85-110
  • Körner, T.W., (1988) Fourier Analysis, , Cambridge Univ. Press, Cambridge
  • Wang, X., Metastability and stability of patterns in a convolution model for phase transitions (2002) J. Differential Equations, 183, pp. 434-461
  • Zhang, L., Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neuronal networks (2004) J. Differential Equations, 197 (1), pp. 162-196

Citas:

---------- APA ----------
Chasseigne, E., Chaves, M. & Rossi, J.D. (2006) . Asymptotic behavior for nonlocal diffusion equations. Journal des Mathematiques Pures et Appliquees, 86(3), 271-291.
http://dx.doi.org/10.1016/j.matpur.2006.04.005
---------- CHICAGO ----------
Chasseigne, E., Chaves, M., Rossi, J.D. "Asymptotic behavior for nonlocal diffusion equations" . Journal des Mathematiques Pures et Appliquees 86, no. 3 (2006) : 271-291.
http://dx.doi.org/10.1016/j.matpur.2006.04.005
---------- MLA ----------
Chasseigne, E., Chaves, M., Rossi, J.D. "Asymptotic behavior for nonlocal diffusion equations" . Journal des Mathematiques Pures et Appliquees, vol. 86, no. 3, 2006, pp. 271-291.
http://dx.doi.org/10.1016/j.matpur.2006.04.005
---------- VANCOUVER ----------
Chasseigne, E., Chaves, M., Rossi, J.D. Asymptotic behavior for nonlocal diffusion equations. J. Math. Pures Appl. 2006;86(3):271-291.
http://dx.doi.org/10.1016/j.matpur.2006.04.005