Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

If Ω ⊂ Rn is a bounded domain, the existence of solutions u ∈ W01, p (Ω) of div u = f for f ∈ Lp (Ω) with vanishing mean value and 1 < p < ∞, is a basic result in the analysis of the Stokes equations. It is known that the result holds when Ω is a Lipschitz domain and that it is not valid for domains with external cusps. In this paper we prove that the result holds for John domains. Our proof is constructive: the solution u is given by an explicit integral operator acting on f. To prove that u ∈ W01, p (Ω) we make use of the Calderón-Zygmund singular integral operator theory and the Hardy-Littlewood maximal function. For domains satisfying the separation property introduced in [S. Buckley, P. Koskela, Sobolev-Poincaré implies John, Math. Res. Lett. 2 (5) (1995) 577-593], and 1 < p < n, we also prove a converse result, thus characterizing in this case the domains for which a continuous right inverse of the divergence exists. In particular, our result applies to simply connected planar domains because they satisfy the separation property. © 2005 Elsevier Inc. All rights reserved.

Registro:

Documento: Artículo
Título:Solutions of the divergence operator on John domains
Autor:Acosta, G.; Durán, R.G.; Muschietti, M.A.
Filiación:Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutierrez 1150, Los Polvorines, B1613GSX Provincia de Buenos Aires, Argentina
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo 172, 1900 La Plata, Pr. de Buenos Aires, Argentina
Palabras clave:Divergence operator; John domains; Singular integrals
Año:2006
Volumen:206
Número:2
Página de inicio:373
Página de fin:401
DOI: http://dx.doi.org/10.1016/j.aim.2005.09.004
Título revista:Advances in Mathematics
Título revista abreviado:Adv. Math.
ISSN:00018708
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00018708_v206_n2_p373_Acosta.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v206_n2_p373_Acosta

Referencias:

  • Bogovskii, M.E., Solution of the first boundary value problem for the equation of continuity of an incompressible medium (1979) Soviet Math. Dokl., 20, pp. 1094-1098
  • Buckley, S., Koskela, P., Sobolev-Poincaré implies John (1995) Math. Res. Lett., 2 (5), pp. 577-593
  • Calderón, A.P., Zygmund, A., On singular integrals (1956) Amer. J. Math., 78, pp. 289-309
  • David, G., Semmes, S., Quasiminimal surfaces of codimension one and John domains (1998) Pacific J. Math., 183 (2), pp. 213-277
  • Durán, R.G., Muschietti, M.A., An explicit right inverse of the divergence operator which is continuous in weighted norms (2001) Studia Math., 148 (3), pp. 207-219
  • Friedrichs, K.O., On certain inequalities and characteristic value problems for analytic functions and for functions of two variables (1937) Trans. Amer. Math. Soc., 41, pp. 321-364
  • Geymonat, G., Gilardi, G., Contre-exemples á l'inégalité de Korn et au Lemme de Lions dans des domaines irréguliers (1998) Equations aux Dérivées Partielles et Applications, pp. 541-548. , Gauthiers-Villars
  • John, F., Rotation and strain (1961) Comm. Pure Appl. Math., 14, pp. 391-413
  • Jones, P., Quasiconformal mappings and extendability of functions in Sobolev spaces (1981) Acta Math., 147, pp. 71-88
  • Martio, O., Sarvas, J., Injectivity theorems in plane and space (1979) Ann. Acad. Sci. Fenn. Ser. A I. Math., 4, pp. 383-401
  • Stein, E.M., (1970) Singular Integrals an Differentiability Properties of Functions, , Princeton Univ. Press
  • Swanson, D., Ziemer, W.P., Sobolev functions whose inner trace at the boundary is zero (1999) Ark. Mat., 37 (2), pp. 373-380
  • Weck, N., Local compactness for linear elasticity in irregular domains (1994) Math. Methods Appl. Sci., 17, pp. 107-113

Citas:

---------- APA ----------
Acosta, G., Durán, R.G. & Muschietti, M.A. (2006) . Solutions of the divergence operator on John domains. Advances in Mathematics, 206(2), 373-401.
http://dx.doi.org/10.1016/j.aim.2005.09.004
---------- CHICAGO ----------
Acosta, G., Durán, R.G., Muschietti, M.A. "Solutions of the divergence operator on John domains" . Advances in Mathematics 206, no. 2 (2006) : 373-401.
http://dx.doi.org/10.1016/j.aim.2005.09.004
---------- MLA ----------
Acosta, G., Durán, R.G., Muschietti, M.A. "Solutions of the divergence operator on John domains" . Advances in Mathematics, vol. 206, no. 2, 2006, pp. 373-401.
http://dx.doi.org/10.1016/j.aim.2005.09.004
---------- VANCOUVER ----------
Acosta, G., Durán, R.G., Muschietti, M.A. Solutions of the divergence operator on John domains. Adv. Math. 2006;206(2):373-401.
http://dx.doi.org/10.1016/j.aim.2005.09.004