Artículo

El editor permite incluir el artículo en su versión final en nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This work is devoted to the exact statistical mechanics treatment of simple inhomogeneous few-body systems. The system of two hard spheres (HSs) confined in a hard spherical pore is systematically analyzed in terms of its dimensionality D. The canonical partition function and the one- and two-body distribution functions are analytically evaluated and a scheme of iterative construction of the D+1 system properties is presented. We analyze in detail both the effect of high confinement, when particles become caged, and the low density limit. Other confinement situations are also studied analytically and several relations between the two HSs in a spherical pore, two sticked HSs in a spherical pore, and two HSs on a spherical surface partition functions are traced. These relations make meaningful the limiting caging and low density behavior. Turning to the system of two HSs in a spherical pore, we also analytically evaluate the pressure tensor. The thermodynamic properties of the system are discussed. To accomplish this statement we purposely focus in the overall characteristics of the inhomogeneous fluid system, instead of concentrate in the peculiarities of a few-body system. Hence, we analyze the equation of state, the pressure at the wall, and the fluid-substrate surface tension. The consequences of new results about the spherically confined system of two HSs in D dimension on the confined many HS system are investigated. New constant coefficients involved in the low density limit properties of the open and closed systems of many HS in a spherical pore are obtained for arbitrary D. The complementary system of many HS which surrounds a HS (a cavity inside of a bulk HS system) is also discussed. © 2010 American Institute of Physics.

Registro:

Documento: Artículo
Título:Statistical mechanics of two hard spheres in a spherical pore, exact analytic results in D dimension
Autor:Urrutia, I.; Szybisz, L.
Filiación:Departamento de Física, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, San Martín, RA-1650 Buenos Aires, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, RA-1428 Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, RA-1033 Buenos Aires, Argentina
Año:2010
Volumen:51
Número:3
DOI: http://dx.doi.org/10.1063/1.3319560
Título revista:Journal of Mathematical Physics
Título revista abreviado:J. Math. Phys.
ISSN:00222488
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00222488_v51_n3_p_Urrutia.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222488_v51_n3_p_Urrutia

Referencias:

  • http://functions.wolfram.com/GammaBetaErf/BetaRegularized; Abramowitz, M., Stegun, I.A., (1972) HandBook of Mathematical Functions, , (Dover, New York)
  • Alder, B.J., Wainwright, T.E., Phase transition for a hard sphere system (1957) J. Chem. Phys., 27, p. 1208. , JCPSA6, 0021-9606, 10.1063/1.1743957
  • Awazu, A., Liquid-solid phase transition of a system with two particles in a rectangular box (2001) Phys. Rev. E, 63, p. 032102. , PLEEE8, 1063-651X, 10.1103/PhysRevE.63.032102
  • Barker, J.A., Henderson, D., What is "liquid"? Understanding the states of matter (1976) Rev. Mod. Phys., 48, p. 587. , RMPHAT, 0034-6861, 10.1103/RevModPhys.48.587
  • Baxter, R.J., Percus-Yevick equation for hard spheres with surface adhesion (1968) J. Chem. Phys., 49, p. 2770. , JCPSA6, 0021-9606, 10.1063/1.1670482
  • Baus, M., Colot, J.L., Thermodynamics and structure of a fluid of hard hyperspheres (1987) Phys. Rev. A, 36, p. 3912. , PLRAAN, 1050-2947, 10.1103/PhysRevA.36.3912
  • Bellemans, A., Bellemans, A., Bellemans, A., Statistical mechanics of surface phenomena, III. Relation between surface tension and curvature (1963) Physica (Amsterdam), 29, p. 548. , PHYSAG, 0031-8914, 10.1016/0031-8914(62)90037-X, PHYSAG, 0031-8914, 10.1016/0031-8914(62)90117-9, PHYSAG, 0031-8914, 10.1016/S0031-8914(63)80167-6
  • Blokhuis, E.M., Bedeaux, D., Pressure tensor of a spherical interface (1992) J. Chem. Phys., 97, p. 3576. , JCPSA6, 0021-9606, 10.1063/1.462992
  • Blokhuis, E.M., Kuipers, J., Thermodynamic expressions for the Tolman length (2006) J. Chem. Phys., 124, p. 074701. , JCPSA6, 0021-9606, 10.1063/1.2167642
  • Blokhuis, E.M., Kuipers, J., On the determination of the structure and tension of the interface between a fluid and a curved hard wall (2007) J. Chem. Phys., 126, p. 054702. , JCPSA6, 0021-9606, 10.1063/1.2434161
  • Bryk, P., Roth, R., Mecke, K.R., Dietrich, S., Hard-sphere fluids in contact with curved substrates (2003) Phys. Rev. E, 68, p. 031602. , PLEEE8, 1063-651X, 10.1103/PhysRevE.68.031602
  • Cao, Z., Li, H., Munakata, T., He, D., Hu, G., Exact statistics of three-hard-disk system in two-dimensional space (2004) Physica A, 334, p. 187. , PHYADX, 0378-4371, 10.1016/j.physa.2003.11.004
  • Clisby, N., McCoy, B.M., Analytic calculation of B4 for hard spheres in even dimensions (2004) J. Stat. Phys., 114, p. 1343. , JSTPBS, 0022-4715, 10.1023/B:JOSS.0000013959.30878.d2, e-print arXiv:cond-mat/0303098
  • Clisby, N., McCoy, B.M., Ninth and tenth order virial coefficients for hard spheres in D dimensions (2006) J. Stat. Phys., 122, p. 15. , JSTPBS, 0022-4715, 10.1007/s10955-005-8080-0
  • Hansen, J.P., McDonald, I.R., (2006) Theory of Simple Liquids, , 3rd ed. (Academic, Amsterdam)
  • Henderson, D., Luding, S., Eisenberg, E., Baram, A., Analysis of the ordering transition of hard disks through the Mayer cluster expansion (2006) Phys. Rev. E, 73, p. 025104. , MOPHAM, 0026-8976, 10.1080/00268977500102511, PLEEE8, 1063-651X, 10.1103/PhysRevE.63.042201, PLEEE8, 1063-651X, 10.1103/PhysRevE.73.025104, (R)
  • Henderson, D., Sokolowski, S., Adsorption in a spherical cavity (1995) Phys. Rev. E, 52, p. 758. , PLEEE8, 1063-651X, 10.1103/PhysRevE.52.758
  • Henderson, J.R., Schofield, P., Statistical mechanics of inhomogeneous fluids (1982) Proc. R. Soc. London, Ser. A, 380, p. 211. , PRLAAZ, 0950-1207, 10.1098/rspa.1982.0038
  • Henderson, J.R., Statistical mechanics of fluids at spherical structureless walls (1983) Mol. Phys., 50, p. 741. , MOPHAM, 0026-8976, 10.1080/00268978300102661
  • Hill, T.L., (1956) Statistical Mechanics, , (Dover, New York)
  • Hu, G., Zheng, Z., Yang, L., Kang, W., Thermodynamic second law in irreversible processes of chaotic few-body systems (2001) Phys. Rev. E, 64, p. 045102. , PLEEE8, 1063-651X, 10.1103/PhysRevE.64.045102
  • Hubbard, J.B., Lebowitz, J.L., Percus, J.K., Thermodynamic properties of small systems (1961) Phys. Rev., 124, p. 1673. , JCTPAH, 0021-9991, 10.1016/0021-9991(71)90107-0, PRVAAH, 0096-8250, 10.1103/PhysRev.124.1673
  • Kim, S.-C., Munakata, T., Equation of state of two-particle systems within hard spherical pores (2003) J. Korean Phys. Soc., 43, p. 997. , KPSJAS, 0374-4884
  • Kratky, K.W., Labík, S., Kolafa, J., Malijevsky, A., Virial coefficients of hard spheres and hard disks up to the ninth (2005) Phys. Rev. E, 71, p. 021105. , PHYADX, 0378-4371, 10.1016/0378-4371(77)90051-6, PLEEE8, 1063-651X, 10.1103/PhysRevE.71.021105
  • Kratky, K.W., Schreiner, W., Kratky, K.W., Kratky, K.W., Intersecting disks (and spheres) and statistical mechanics. I. Mathematical basis (1981) J. Stat. Phys., 25, p. 619. , JCTPAH, 0021-9991, 10.1016/0021-9991(80)90021-2, JCFTBS, 0300-9238, 10.1039/f29827800379, JSTPBS, 0022-4715, 10.1007/BF01022357
  • Loeser, J.G., Zhen, Z., Dimensional interpolation of hard sphere virial coefficients (1991) J. Chem. Phys., 95, p. 4525. , JCPSA6, 0021-9606, 10.1063/1.461776
  • Lovett, R., Baus, M., A family of equivalent expressions for the pressure of a fluid adjacent to a wall (1991) J. Chem. Phys., 95, p. 1991. , JCPSA6, 0021-9606, 10.1063/1.460996
  • Löwen, H., (2000) Statistical Physics and Spatial Statistics, 554, pp. 295-331. , Mecke, K. R., Stoyan, D., 10.1007/3-540-45043-2_11, in, Lectures Notes in Physics Vol., edited by and (Springer, Berlin Heidelberg)
  • Luban, M., Baram, A., Joslin, C.G., Comment on "Third and Fourth virial coefficients of hard hyperspheres" (1982) J. Chem. Phys., 77, p. 2701. , JCPSA6, 0021-9606, 10.1063/1.443316, JCPSA6, 0021-9606, 10.1063/1.444104
  • Luban, M., Michels, J.P.J., Equation of state of hard D-dimensinal hyperspheres (1990) Phys. Rev. A, 41, p. 6796. , PLRAAN, 1050-2947, 10.1103/PhysRevA.41.6796
  • Lyberg, I., The fourth virial coefficient of a fluid of hard spheres in odd dimensions (2005) J. Stat. Phys., 119, p. 747. , JSTPBS, 0022-4715, 10.1007/s10955-005-3020-6, e-print arXiv:cond-mat/0410080
  • Martinus Oversteegen, S., Barneveld, P.A., van Male, J., Leermakers, F.A.M., Lyklema, J., Thermodynamic derivation of mechanical expressions for interfacial parameters (1999) Phys. Chem. Chem. Phys., 1, p. 4987. , PPCPFQ, 1463-9076, 10.1039/a906437k
  • McQuarrie, D.A., Rowlinson, J.S., The virial expansion of the grand potential at spherical and planar walls (1987) Mol. Phys., 60, p. 977. , MOPHAM, 0026-8976, 10.1080/00268978700100651
  • (2000) Statistical Physics and Spatial Statistics, 554. , Mecke, K. R., Stoyan, D., 10.1007/3-540-45043-2, Lectures Notes in Physics Vol., edited by and (Springer, Berlin Heidelberg)
  • Morante, S., Rossi, G.C., Testa, M., The stress tensor of a molecular system (2006) J. Chem. Phys., 125, p. 034101. , JCPSA6, 0021-9606, 10.1063/1.2214719
  • Mulder, B.M., The excluded volume of hard sphero-zonotopes (2005) Mol. Phys., 103, p. 1411. , MOPHAM, 0026-8976, 10.1080/00268970500077590
  • Munakata, T., Hu, G., Statistical mechanics of two hard disks in a rectangular box (2002) Phys. Rev. E, 65, p. 066104. , PLEEE8, 1063-651X, 10.1103/PhysRevE.65.066104
  • Németh, Z.T., Löwen, H., Németh, Z.T., Löwen, H., Freezing and glass transition of hard spheres in cavities (1999) Phys. Rev. E, 59, p. 6824. , JCOMEL, 0953-8984, 10.1088/0953-8984/10/28/003, PLEEE8, 1063-651X, 10.1103/PhysRevE.59.6824
  • Poniewierski, A., Stecki, J., Statistical mechanics of a fluid in contact with a curved wall (1997) J. Chem. Phys., 106, p. 3358. , JCPSA6, 0021-9606, 10.1063/1.473084
  • Post, A.J., Glandt, E.D., Prestipino, S., Giaquinta, P.V., Statistical geometry of four calottes on a sphere (1994) J. Stat. Phys., 75, p. 1093. , JCPSA6, 0021-9606, 10.1063/1.451322, JSTPBS, 0022-4715, 10.1007/BF02186758
  • Reiss, H., Frisch, H.L., Lebowitz, J.L., Statistical mechanics of rigid spheres (1959) J. Chem. Phys., 31, p. 369. , JCPSA6, 0021-9606, 10.1063/1.1730361
  • Rowlinson, J.S., A drop of liquid (1994) J. Phys.: Condens. Matter, 6, pp. A1. , JCOMEL, 0953-8984, 10.1088/0953-8984/6/23A/001
  • Salsburg, Z.W., Wood, W.W., Equation of state of classical hard spheres at high density (1962) J. Chem. Phys., 37, p. 798. , JCPSA6, 0021-9606, 10.1063/1.1733163
  • Sokolowski, S., Stecki, J., Sokolowski, S., Stecki, J., Stecki, J., Sokolowski, S., Stecki, J., Sokolowski, S., The surface second virial coefficient (1980) Mol. Phys., 39, p. 343. , ZZZZZZ, 0044-6033, MOPHAM, 0026-8976, 10.1080/00268977800101101, PLRAAN, 1050-2947, 10.1103/PhysRevA.18.2361, MOPHAM, 0026-8976, 10.1080/00268978000100291
  • Suh, S.-H., Lee, J.-W., Moon, H., MacElroy, J.M.D., Molecular dynamics studies of two hard-disk particles in a rectangular box I. Thermodynamic properties and position autocorrelation functions (2004) Korean J. Chem. Eng., 21, p. 504. , KJCHE6, 0256-1115, 10.1007/BF02705441
  • Suh, S.-H., Kim, S.-C., Statistical properties of two particle systems in a rectangular box: Molecular dynamics simulations (2004) Phys. Rev. E, 69, p. 026111. , PLEEE8, 1063-651X, 10.1103/PhysRevE.69.026111
  • Thiele, E., Carnahan, N.F., Starling, K.E., Wang, X.Z., Miandehy, M., Modarress, H., Rusanov, A.I., Theory of excluded volume equation of state (2004) J. Chem. Phys., 121, p. 1873. , JCPSA6, 0021-9606, 10.1063/1.1734272, JCPSA6, 0021-9606, 10.1063/1.1672048, PLEEE8, 1063-651X, 10.1103/PhysRevE.66.031203, JCPSA6, 0021-9606, 10.1063/1.1587697, JCPSA6, 0021-9606, 10.1063/1.1767521,t
  • Urrutia, I., Two hard spheres in a spherical pore: Exact analytic results in two and three dimensions (2008) J. Stat. Phys., 131, p. 597. , JSTPBS, 0022-4715, 10.1007/s10955-008-9513-3
  • Urrutia, I., (to be published); Uranagase, M., Munakata, T., Statistical mechanics of two hard spheres in a box (2006) Phys. Rev. E, 74, p. 066101. , PLEEE8, 1063-651X, 10.1103/PhysRevE.74.066101
  • Uranagase, M., Effects of conservation of total angular momentum on two-hard-particle systems (2007) Phys. Rev. E, 76, p. 061111. , PLEEE8, 1063-651X, 10.1103/PhysRevE.76.061111
  • Wood, W.W., Jacobson, J.D., Preliminary results from a recalculation of the Monte Carlo equation of state of hard-spheres (1957) J. Chem. Phys., 27, p. 1207. , JCPSA6, 0021-9606, 10.1063/1.1743956
  • Wyler, D., Rivier, N., Frisch, N.L., Finken, R., Schmidt, M., Löwen, H., Freezing transition of hard hyperspheres (2001) Phys. Rev. E, 65, p. 016108. , PLRAAN, 1050-2947, 10.1103/PhysRevA.36.2422, PLEEE8, 1063-651X, 10.1103/PhysRevE.65.016108
  • Zheng, Z., Hu, G., Zhang, J., Ergodicity in hard-ball systems and Boltzmann's entropy (1996) Phys. Rev. E, 53, p. 3246. , PLEEE8, 1063-651X, 10.1103/PhysRevE.53.3246

Citas:

---------- APA ----------
Urrutia, I. & Szybisz, L. (2010) . Statistical mechanics of two hard spheres in a spherical pore, exact analytic results in D dimension. Journal of Mathematical Physics, 51(3).
http://dx.doi.org/10.1063/1.3319560
---------- CHICAGO ----------
Urrutia, I., Szybisz, L. "Statistical mechanics of two hard spheres in a spherical pore, exact analytic results in D dimension" . Journal of Mathematical Physics 51, no. 3 (2010).
http://dx.doi.org/10.1063/1.3319560
---------- MLA ----------
Urrutia, I., Szybisz, L. "Statistical mechanics of two hard spheres in a spherical pore, exact analytic results in D dimension" . Journal of Mathematical Physics, vol. 51, no. 3, 2010.
http://dx.doi.org/10.1063/1.3319560
---------- VANCOUVER ----------
Urrutia, I., Szybisz, L. Statistical mechanics of two hard spheres in a spherical pore, exact analytic results in D dimension. J. Math. Phys. 2010;51(3).
http://dx.doi.org/10.1063/1.3319560