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This work is devoted to the exact statistical mechanics treatment of simple inho-
mogeneous few-body systems. The system of two hard spheres (HSs) confined in a
hard spherical pore is systematically analyzed in terms of its dimensionality D. The
canonical partition function and the one- and two-body distribution functions are
analytically evaluated and a scheme of iterative construction of the D+1 system
properties is presented. We analyze in detail both the effect of high confinement,
when particles become caged, and the low density limit. Other confinement situa-
tions are also studied analytically and several relations between the two HSs in a
spherical pore, two sticked HSs in a spherical pore, and two HSs on a spherical
surface partition functions are traced. These relations make meaningful the limiting
caging and low density behavior. Turning to the system of two HSs in a spherical
pore, we also analytically evaluate the pressure tensor. The thermodynamic prop-
erties of the system are discussed. To accomplish this statement we purposely focus
in the overall characteristics of the inhomogeneous fluid system, instead of concen-
trate in the peculiarities of a few-body system. Hence, we analyze the equation of
state, the pressure at the wall, and the fluid-substrate surface tension. The conse-
quences of new results about the spherically confined system of two HSs in D
dimension on the confined many HS system are investigated. New constant coef-
ficients involved in the low density limit properties of the open and closed systems
of many HS in a spherical pore are obtained for arbitrary D. The complementary
system of many HS which surrounds a HS (a cavity inside of a bulk HS system) is
also discussed. © 2010 American Institute of Physics. [doi:10.1063/1.3319560]

I. INTRODUCTION

The hard sphere (HS) and hard disk (HD) systems have attracted the interest of many people
because they constitute prototypical simple fluids and even solids. 1729444833 The extension to
arbitrary dimensionality of this hard spherical particle system has been the object of several
studies too. !#15:27:31:3254 Although the apparent simplicity of these systems, only a few exact
analytical results for the homogeneous system are known concerning mainly the dimensional
dependence of the first four virial coefficients' %2 existing numerical extensions to higher
order.'>* Exact virial series studies has been also done in inhomogeneous systems&‘%’45 in three
dimensions. Recently some attention was dedicated to very small and inhomogeneous systems of
HS and HD confined in small vessels. The study of small systems constrained to differently
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shaped cavities has enlightening aspects of loss of ergodicity, glass transitions, thermodynamic
second law, and some other fundamental questions of statistical mechanics and
thermodynamic, #222439:46.47.55

The exact evaluation of the properties for continuous (nonlattice) inhomogeneous systems of
few particles is a new trend in statistical mechanics. The analyzed systems are usually HS and HD
where the hard potential represents the simplest non-null interaction and different ensembles
approach may be done. An indirect result of these calculations is the exact volume, size, and even
number of particle dependence of low order cluster integrals.&z1’26’34’49 Until now, the systems of
two and three equal HDs in a rectangular box has been solved"**® more recently two HS in a box>!
and two HSs and HDs in a hollow or spherical cavity49 were studied. A systematic dimensional
approach of the two HS in a box system was also done in Ref. 51, where an iterative construction
framework was adopted for the increasing dimensional system, but only the two and three dimen-
sional systems were explicitly solved. In this work we focus on the analytical evaluation of the
canonical partition function (CPF) for two HS particles confined in a hard wall spherical pore
(HWSP) in arbitrary dimension D, from now on 2-HS-HWSP. Then this work may be seen as the
complement and the dimensional generalization of Ref. 49. In the rest of the manuscript we will
use HS as the dimensional generalization of HSs. With the purpose to avoid any confusion we
should mention that pore and cavity are synonyms along present work (PW). Sometimes, an empty
spherical space inside of a bulk fluid was also called a cavity in the literature.

From a more general point of view, the object of this manuscript is the exact analytic study of
an inhomogeneous fluid system with spherical interface. This general problem is currently studied
because of an incomplete understanding of the surface tension behavior in the presence of curved
interfaces.”'""'*%** It seems that the spherical symmetry is the simplest one, and then the prin-
cipal subject of several works on curved interfaces but deviations from sphericity are also
studied.” The suspended drop on its vapor,g’m’lg the bubble of vapor on its liquid, the fluid in
contact with a spherical convex substrates (or cavity in the liquid),”’lz’w’20 and the fluid confined
in a spherical vessel or pore“‘l&40 are different systems in which the spherical inhomogeneity of
the fluid is central, and currently, the study of these systems are converging to the analysis of the
curvature dependence of physical magnitudes.“ Particularly relevant for PW are such works on
HS systems12 and hard wall spherical substrates.''?* PW seen on this context shows the dimen-
sional dependence of an analytical solvable system on this up to date and relevant problem in
statistical mechanics and thermodynamics. In PW we study a fluid in contact with a hard wall,
therefore, we deal with the surface tension of a fluid-substrate interface. We know that the point of
view of a two-particle fluid may be somewhat conflicting. Few-body systems are not gases, nor
liquids and neither solids, but we wish to emphasize that the toolbox of statistical mechanics must
be applicable also to the two particle inhomogeneous system, despite of whether it is fluid or not.
Naturally, the ergodic characteristics of the system must be considered. We may note that the
equivalence between different ensembles of statistical mechanics is here invalid. The use of the
canonical ensemble enables the analysis of such few-body system. In PW it is assumed that the
2-HS-HWSP system is well described by the constant temperature ensemble without angular
momentum conservation, i.e., the usual canonical ensemble, but different assumptions may be
done.”* The macroscopic open inhomogeneous system of many HS, interacting with a hard wall
and even in a HWSP were studied in a virial series way by Bellemans® and Stecki and
Sokolowski*’ for D=3. The virial series or density and curvature power series expansion of
statistical mechanic magnitudes are of the highest importance because are a source of exact
results, which guide the development of the field. Therefore, we will make contact between PW
and several cluster integrals reported in Refs. 8 and 45. The first terms of the density and curvature
expansion of the grand canonical potential, surface tension, and adsorption are easily obtained as
a by product of the configuration integral (CI) of 2-HS-HWSP. Then, we present the value of some
integral coefficients related to thermodynamical properties of open inhomogeneous systems and
comment on this until now unknown dimensional dependence.

In Sec. IT we show how a spherical pore that contains two HS can be treated as another
particle. There we bring up the central problem solved in PW, the evaluation of CPF, and distri-
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bution functions of 2-HS-HWSP in D dimensions. We also establish a relation between its CI, the
CI of three HS, and the third pressure virial coefficient for the bidisperse homogeneous system of
HSs. The exact analytical evaluation of its statistical mechanic properties is done in Sec. III where
we do a detailed inspection of the highest and lowest density limits and make the link with the first
terms of the density power series coefficients of some physical properties of the bulk fluid system.
Principal characteristics of the one body distribution function are also analyzed. Section IV is
devoted to trace the properties of two systems closely related to the 2-HS-HWSP: two sticked
spheres in a spherical pore and two spheres moving on a spherical surface. The CI of the three
systems are strongly related as a consequence of the introduced sticky bond transformation. A
discussion of the mechanical equilibrium condition for spherical inhomogeneous systems and the
analytical evaluation of the pressure tensor is reported in Sec. V. The equation of state (EOS), the
(substrate-fluid) surface tension, and other thermodynamic features of the 2-HS-HWSP are studied
in Sec. VI, where the density and curvature first order terms of several magnitudes are determined.
Several relations with the bulk HS-HWSP open system and its conjugated system, when HS
particles are outside of a hard spherical substrate, are also provided. Final remarks are given in Sec
VII.

Il. PARTITION FUNCTION AND DIAGRAMS

We are interested in the properties of the CPF of two D-spherical particles of diameter o,
which are able to move inside of a D-spherical pore of radius R'. The total partition function Op
splits on kinetic and configuration space terms. The kinetic term is given by A~2P, where A
=(27Bh*/m)"? is the thermal de Broglie wavelength and B=(kgzT)~'. Then the central problem
solved in this work corresponds to the evaluation of CI, i.e., to analytically solve Qp,

Op= QDA2D=J f eaepeapdradry, (1)
eap = expl— Bd(rap)] = O(rpg - 0), (2)
e;=exp[— B(r)]=OR-r), (3)

where ¢(rap) is the hard core potential between both spherical particles, #(r;) is the external hard
spherical potential, i=A, B, and Qp is independent of temperature. The effective radius is R
=R'-0/2 and O(x) is the Heaviside unit step function [@(x)=1 if x=0 and zero otherwise]. Then
a variation in o at fixed R does not imply a volume variation. For future reference we introduce
the Mayer functions f (or f-bond),

eap=1+fap, fap=—0(0—r4p),

e=1+f,, fi=-0(@;-0), (4)

functions e,, ep, and f,p may be seen as overlapping functions, they take the unit value (positive
or negative) if certain pair of spheres overlaps and become null if the pair of spheres does not
overlap, just the opposite apply to the f4, fg, and e g nonoverlapping functions. We are interested
in the graph representation of Eq. (1) then we will draw the positive overlap functions, i.e.,
{es,ep,—fap}, as continuous lines, and positive nonoverlap functions, i.e., {~fa,—f5,€ag}> as

dashed lines. The graph of CI is then
()
Op= \ s
@ --®

(5)
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where it is implicitly assumed the integration over the coordinates of both particles A and B.
Equation (5) shows that the system is equivalent to a three particle system. We can apply the
in-out relation for three bodies"’ performing a simple decomposition over the particle P in Eq. (5)

TARVARVAN

where —1 factors were omitted. All the integrals drawn as not fully connected graphs can be
evaluated directly because they are factorizable.”! Focusing on the fully connected graphs, first
row relates the CI with the—shape and volume dependent—second cluster integral b(V) of the
inhomogeneous system, which is also part of the third cluster integral of the homogeneous mul-
tidisperse HS system.21 Second row separates the trivial volumetric term from the nontrivial
area-scaling integral. For only two bodies we have

= Vp(R) =R”Sp/D,

(7)
=—Vp(o)=-2bp, ®)
Sp=27""T(D/2), 9)

where Vj(R) and Ap(R)=RP~'S, are the volume and surface area of the D-sphere of radius R,
with S}, the solid angle. Equation (7) is the accessible volume for a particle in a pore with effective
radius R, i.e., the CI for the one particle system, and Eq. (8) is twice the second cluster integral or
second pressure virial coefficient in the infinitely homogeneous system of HS which we name
bD.21 With this prescription by, is a positive defined constant. An interesting point is that an inner
sphere with radius R—o7/2 exist, when this sphere has the same radius of the particles, i.e., 0/2 or
R=o0, last integral in first row of Eq. (6) is (minus) 2 ;i‘, where BE“ is the second irreducible
cluster integral and —23;“/3 is the third virial series coefficient of the pressure for the homoge-
neous HS system21 in D dimensions.

lll. THE CI AND DENSITY DISTRIBUTION INTEGRATION

With the purpose of evaluate analytically O, we introduce a few geometrical functions. The
function Wp(r,R;), for 0=r=2R,, is the partial overlap volume between two spheres of radius
R, >0 which centers are separated by a distance r, while for —2R; =r <0, it measures the joined
volume of partial overlapping spheres. The volumes of intersection and union of both spheres are
related by Wp(r,R,)=2Vp(R,)=Wp(-r,R;). The function Z,(r,R,) is a generalization of the
above idea for —oo <r<<+oo,

0, if r>2R,
Zp(r,R)) =y Wp(r,Ry), if [r|=2R, (10)
ZVD(RI)’ lf r<< —2R1.

Similarly, for two spheres with different radii R, and R, (assuming R; =R,) and restricting now to
r>0, we have the overlap volume Z;(r,R;,R,),
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O, lf r>R] +R2,
ZD(r’Rl’RZ)z WD(r’R]’RZ)’ if RI_RZSrsRl-'-RZ (11)
VD(Rz), if 0<I"<R1—R2,

where Wy(r,R|,R,) is the volume in the partial overlap configuration. As a consequence of the
lens shape of the intersecting volumes of two equal and unequal spheres, they are related by
WD(r’RlaRZ)z %WD('J’RI)-'- %WD(r,,’RZ)’ (12)

with 7' =r+(RT=R3)/r, r"=r—(R;—R3)/r, and negative values of 7' and " are possible due to Eq.
(10). We may transform Eq. (10) to a dimensionless function of x=r/(2R;),

0, if x>1
Zp(r,R) = Vp(R){p(x) = Vp(Ry) X ywp(x), if —1=x=1 (13)
2, if x<-1,

Function wp(x) for 0=x=1 measures the overlap or intersection volume between two spheres
with unit radii separated by a distance x, whereas wj(—x) measures the join volume. Following the

same idea Eq. (11) may be expressed as a function of y=r/(2R) [with R=(R,+R,)/2],

0, if y>1
Zp(r,R1,Ry) = Vp(R){p(y,A) = Vi (R) X {wp(»,4), if A=sy=1 (14)
wp(AA), if 0=y <A,

and A=(R,-R,)/(2R). For A=0 one gets y=x, {p(y,0)={p(x), and wp(y,0)=wp(x). Function
wp(y,A) measures the normalized overlap volume of two spheres with unit mean radius, asym-
metry A, and centers separated by a distance y with A=y=1. The analysis of the properties of
functions {{p(x), {p(y,A) ,wp(x),wp(y,A)} will be left to Sec. IIT A. Now we shall point out that,
following a procedure depicted in Ref. 49, we may write down two relevant distribution functions.
A pair distribution function g(r,p) in which the position of the pore center was integrated, and the
one body distribution p(r,),>!

§(rap) = 0p' Vp(R)eapwp(rap/2R), (15)
—20-'V (R { <R+0'>D < A R—O’) 16
p(ra) = Op p(R)ea| 1 - 2R {p R+o'R+o) | (16)

Function g(r,p) is the probability density distribution of finding both particles separated by a
vector rap. The normalization equations for these functions are [p(ra)dra=2 and [g(rag)drag
=1. We also introduce g(rpg)=8(rag)Vp(R)/2 which is essentially the usual prescription of the
pair distribution function in the canonical ensemble [see Eq. (29.35) in Ref. 21]. Performing the
complete integration [of Eq. (15), for example], it is found the partition function,

2R
0p=APS, Vo (R) | P 'wp(r/2R)dr, (17)

o

1
=A2PV2(R)2PD f P wp(x)dx = A2PVE(R)gp(2), (18)
z

where z=0/(2R) is positive, gp(z) is the reduced CI, and ¢, (z)=0 if z=1.



033303-6 I. Urrutia and L. Szybisz J. Math. Phys. 51, 033303 (2010)

A. The auxiliary functions wp(x) and wp(y,A)

The overlap volume between two spheres with unit radii in any dimension, wp(x) for 0=x
=1, introduced in Eq. (13) is’

wp(x) = I_2((D + 1)/2,1/2), (19)

being I.(a,b)=B.(a,b)/B(a,b) the normalized incomplete beta function, defined in terms of the
beta function B(a,b)=I(a)['(b)/T(a+b) and the incomplete beta function B,(a,b)=[dtt" (1
—1)?1.% For future reference we introduce the shortcut Bp,=1/B((D+1)/2,1/2)=Sp,,/Sp,2. We
extend definition (19) following Egs. (10) and (13) to wp(x)—1==(wp(—x)—1) for -1 =x=0. In
turn, due to the relation I,_,2(a,b)=1-12(b,a), for -1 =x=1 we have

wp(x) = 1 = —sign(0)1,2(1/2,(D + 1)/2), (20)

where sign(x)=1 if x=0 and sign(x)=-1 if x<0. Therefore, for D >0, wp(x) is analytic for
—1<x<1, and both {wp(x)—1,{p(x)—1} are odd functions. It is also possible to construct wp(x)
from the recurrence relations,7

W—l(-x):lv (21)
2
wo(x) = ;arccos(x), (22)
wp(x) =wp_o(x) = x(1 - xz)(D_])/ZZBD/D, (23)

B_,=0, By=1/m, and Bp=D/(27Bj_,). Expressions for D=1, 2, 3, 4, and 5 are

wi(x)=1-x, (24)

2
wy(x) = ;[arccos(x) —x(1-x»)"2], (25)
wi(x)=1- %x + %x3, (26)
wy(x) = %[arccos(x) - <§x— §x3>(1 —xz)”z], (27)
ws(x)=1- %x + %x3 + %xs. (28)

As far as we will need the asymptotic analysis of the wp(x) function, it is resumed here. In the
x—0 and x— 1 limits we have, respectively,

wp(x)=1-2Bpx+ BD)C3 - Os(x), (29)
(D+3)/2
wp(x) = Tl’)u —x)@*D2(1 4+ O(1 - x)). (30)

Following Egs. (10)—(13) wp(y,A) may be written as
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wp(,4) = 3(1+A8) wp(x) + 3(1 = 4)Pwp(x). @31

with x' =7" /2R, =cos(6;)=(y?+A)/[y(1+A)] and x"=r"/2R,=cos(6,)=(y*>—=A)/[y(1-=A)], here 6,
is the angle opposite to the side of length R; in the triangle (R,R,,r), i.e., cos(8;)=(-R:+R3
+72)/(2R,r) and cos(02)=(R%—R§+r2)/(2R1r). A recurrence relation for wp(y,A) is derived in
Appendix A. From Egs. (21)—(28) or from Egs. (A3)—(A10) of Appendix A, we have that the first
functions of the series are

w_(y,A) = 1/(1 — A?), (32)

WO(y’A) = vO(y’A) 5 (33)

(1, 8) = ~(1 + 4)° (y2+A) Li-ap (yz‘A) (34)
op(y,4) = — + arccos e d) +7T - arccos A

leading to the following expressions for D=1, 2, 3, 4, and 5:

wi(y,4)=1-y, (35)

wy(y,A) =~ %((1 -y =A%) +u,y(y,4), (36)

wi(y,4) = (2y) 7' (1 = y)*(2y + y* = 347), (37)

W) == (1 =07 - A P - 571+ A -4 o), (39)
ws(y,4) = 2y) (1 = y)’(8y + 9y* + 3y” = 10A%)*(3 +y) + 5A%(1 + 3y)), (39)

where Egs. (32)-(39) apply for max(0,A)=y=1.

B. The reduced CI
As shown in Appendix B, the reduced CI gp(z) defined in Eq. (17) may be written as

qp(2) = up(z) = (22)°wp(2) (40)
for 0=z=1, while g,(z>1)=¢,(1)=0, with

up(z) =1_2((D+1)/2,(D + 1)/2), (41)

valid for D=0 but not for D=-1. Quantity u; may be derived from the recurrence relation,

u_i(z)=1/2, (42)
uo(z) = (2/m)arccos(z), (43)
up(2) = up_y(2) + 22711 = 2)P-D2( — 2)T(DYT(D +1)/2). (44)

The CI for D=-1 and 0 are

1 1
4—1(Z)=§<1—z), (45)
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FIG. 1. (Color online) Reduced partition function ¢, (z) as a function of z=0/2R for several dimensions. From left to right
D=1, 2,3, 4,5, 10, and 50 last two in dashed line.

q0(2) =0, (46)
while for D=1, 2, 3, 4, and 5 are
q1(2)=(1-2)% (47)
2 —

q2(z) = 7_7[(1 - (2z)Yarccos(z) + zV1 - 22(1 +22%)], (48)
g3(2) = 1= (22)* + 92" - 22°, (49)

2 4 1 / 2 2 4 6
q4(2) = g (1= (22)%)arccos(z) + 3=z (3+222+567* - 162°) |, (50)
q5(z) =1-(22)° +50° - 25° + 62'°. (51)

It is apparent that CI for odd D is polynomial with order 2D and integer non-null coefficients at
terms of order 0, D, and D+ 1+2k with k=0,1,2,...,(D-1)/2. However, for even D partition
function is not polynomial. These and other interesting properties may be derived from the series
representation of the incomplete beta function [from Ref. 1 and Eq. (26.5.4) of Ref. 2]. Function
qp(2) is plotted in Fig. 1 for several values of D. For all D=0 we have ¢5(0)=1, ¢p(1)=0, and
for large D limit ¢p_..(z)=0(27Y>=z). Let us now look at some asymptotic behavior.

Large cavity limit. The infinitely dilution or large cavity limit z—0 (i.e., 0/R—0) can be
studied from the series representation of the reduced partition function gp(z) near z=0,

©

ap(2)=1-2°C o+ 2P4'Cp +2°0C 5 + > PPC . (52)
k=1

where we introduce a set of dimensional dependent constants {C} that will denote some power
series coefficients through PW (quoted in Table I). Here, C 1’0=2D, C 1’1=2DB p2D/(D+1), and
C1,=-2PBpD(D-1)/3(D+3). For odd D Egq. (52) is effectively an order 2D polynomial. As we
will see later, the constant coefficients {C;,C ;,C),} are involved in physical properties of the
equivalent many body system. From Egs. (1) and (18) we obtain
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Op=Vp(R) = Vp(R)2bp + Ap(R)2ap — JIp(R)28y" + Op 5(R), (53)

written in terms of the extensive squared mean curvature JJp(R)=Ap(R)-(D—1)>-R~2. The coef-
ficients of area and curvature are

ap=bp, 2w, (54)
D+1
&) =bpus—(2%37), (55)

and 5(DO)=O corresponds to the absent term proportional to A, (R)R™'. We may remark that curva-
ture dependence is neither proportional to total nor to Gaussian curvatures, j=(D—1)/R and k
=R P-1, respectively. As may be expected Vj,(R)2b), is the first nonideal correction, and first sign
of inhomogeneity and curvature dependence appears in the next two terms. They are deeply
connected with bp,; the second cluster integral in higher dimensionality. Therefore, we are show-
ing a direct relation between the—intrinsically inhomogeneous—properties of 2-HS-HWSP and
the low density limit properties of HS homogeneous system in higher dimension. Equations
(53)—(55) also mix the properties of systems with odd and even dimensions. Finally, note that Eq.
(53) is exact for D=3 without the order D—5 term® and coincidentally j>~k with the constant
value JJ5(R)=2%mr. Further, JJp(R)[(D+1)/(D-1)]|p_3=JJ5(R)+2K5(R) with the extensive
Gaussian curvature Kj,(R)=Ap(R)-k. Fixing R=0 the inner sphere and both particles have the
same size and we obtain from Egs. (6) and (53)

2,3§ir|D=3=— (2b3)2+A3(o')2a3—JJ3(0')26“), (56)
where the second irreducible cluster integral BZ" which involves three nodes®' is now written in
terms of geometrical measurements of the cavity’s boundary {A;(o),JJ5(o)} in three dimensions
and two body integrals by, in D=3. Baus and Colot’ found By p==(bp)*wp(1/2). These type of
relations may be interesting for higher order integrals. The three body integral (two HS plus the
cavity) Qp and its moments are linked with several three-body integrals describing physical
properties of the HS inhomogeneous fluid in the low density limit, inside a spherical cavity, and
even outside a spherical substrate, which will be discussed later in Sec. VI.

Small cavity limit. Looking at the opposite situation of high density or caging limit we found
the final solid, i.e., the densest available configuration of the system. This limiting behavior has
been extensively studied for the HS homogeneous solid system, but also, in small systems.39’49
The caging limit of 2-HS-HWSP is obtained at the root z=1. The reduced partition function has an
interesting series representation in the neighboring of z=1 (valid for z=1),

gp(z)=(1- Zz)(D+3)/2C2,o(1 + C2,1(1 - Zz) +0,(1 - Zz)), (57)

with C,y=C, /(D+3), C,1=(7-D?)/2(D+35). It shows that CI goes to zero as (1—z)?+¥"2 when
system becomes caged. The partition function is then

0p =P V2R - 3/2)PH2C; (1 - 7'C3 (R - 0/2) + O5(1 = 2R/ 7)), (58)

here C30=C,2*P(Sp/D)* and C3,=2"'(-9+8C, +5D). Since Q) is identically zero for R
< /2 Eq. (58) implies that Qj, is nonanalytic at R=¢/2. For odd D, the derivative of order 2
+(D+1)/2 and beyond are zero. However, for even D the derivatives of order 2+D/2 and bigger
involve an infinite discontinuity. When a closed system of hard particles is caged as a consequence
of the high confinement, the spatial degrees of freedom that becomes lost are related to a zero
measure set in the CI integral similar to (1). The consequence is that Q becomes zero, and the
signature of the frozen spatial freedom is the order of this root. We introduce the number of spatial
lost degrees of freedom (LDFs) and the complementary number of kept degrees of freedom
(KDF), their addition provides the total spatial degrees of freedom LDF+KDF=N-D, where N
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FIG. 2. (Color online) Characteristic values of density profile. Densities at the central plateau p, (continuous line) and at

contact p, (dashed line) as a function of pore size. From top to bottom dimensions D=3, 5, and 7. Rough density p for
D=3 is showed in dotted line.

=2 is the actual number of particles. We relate LDF with the exponent (D+3)/2 in (58). For the
studied system of 2-HS-HWSP in the caging limit we obtain

LDF=(D+3)2=1+(D+1)/2, (59)

KDF=2D - LDF= (D - 1)3/2. (60)

In next sections we will study LDF and KDF in other situations.

C. The one-body distribution

The one body distribution function is qualitatively similar for all the dimensions and was
previously described in detail for D=2 and 3 (Ref. 49) (Fig. 2 therein). A peculiarity of p(r) is the
plateau of constant density that appears for R> ¢, and which extends from the center to r=R
—0o. For 0/2<R< o a null density plateau develops in the range 0 <r<o—R. Therefore, the
central plateau density is

po=20pVpl1 = (22)P1=2(Vp = 2b,)/Qp, (61)

if R=0, while py=0 if 0/2=R <. Other interesting magnitude is the density at the wall or
contact density p.=p(r=R),

pe=2Vp0p{1 = 2[wp(1 =222 + (22)°wp(2) ]} (62)

These quantities are shown for several dimensions as a function of pore size in Fig. 2. We
introduce the rough or mean number density p=2/V,(R) for comparison. We would like to
emphasize that p(r) is a discontinuous function at the cavity surface falling down to zero outside
the cavity and, also, is nonanalytic at r=Abs(R— o). The function o(r) a regularized version of
p(r) at r=R may be introduced by the short hand,

p(r) =ex(r)e(r), (63)

which must be understood with the help of Eq. (16). It is similar to p(r) but includes its analytic
continuation for R=<r= R+ o and therefore is a smooth function at the hard wall [Ref. 16 p. 166
therein, this procedure was also used in the case of homogeneous fluids, see Eq. (6.11) in Ref. 5).
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IV. OTHER CLOSELY RELATED SYSTEMS

It is possible to establish interesting relations between the CPF of 2-HS-HWSP and that of
other systems. One of them involves the one stick or dumbbell in the spherical pore, where we
think the stick as a rigid body formed by two sticked HS. Other system is that composed by two
hard spherical bodies which are constrained to move between the HWSP and an inner hard
spherical core. For sufficiently large hard core radius we find the limiting case of 2-HS that are
able to move on the surface of a sphere. We may imagine that this system is constituted by two
HSs sticked to the surface of the HWSP, all immersed in a D dimensional Euclidean space.
Therefore, it has an effectively reduced dimension of D—1. Both systems may be seen as origi-
nated in the 2-HS-HWSP and they emerge as a consequence of the addition of a new sticky
property. Interestingly, this property is easily introduced by a simple transformation. In PW we
will not make a general digression about this transformation, but we simple state that a sticky-bond
transformation is performed when one or several of the e or f functions in (1) and (18) is
transformed in a Dirac delta function or s-bond. In a system of many hard bodies in a hard pore
a sticky transformation may be done for example by sticking one particle on the surface of the
pore, or sticking particles together. The sticky-bond transformation is interesting because in an
N-body system the most compact spatial configuration or final solid may be obtained through a
series of such operations. It may also mimic a nucleation or condensation process, the adsorption
on a surface, and even some chemical reactions. In this section the temperature and kinetic factor
are not relevant, then we simply make A=1 and then CI and CPF are equal. We may mention that
the sticky bond implies that the two bodies must fix their distance, then, even when the concept is
related with the adhesive HS bond of Baxter® they are not equivalent.

A. The one stick in a HWSP partition function

When two HSs become sticked together they conform a rigid body because the s-bond fix the
interparticle distance to o, they form a stick. The sticky-bond transformation may be done by
applying the derivative d, to Qp, on Egs. (1) and (18),

Opi=Cpd,0p, (64)

the b-subindex label means body particle opposite to point particle which may be used to describe
a HS. The constant C,=—0~ P! is found from the large size limit, obtaining

Opi=SpQp&lo) = SpVp(R)wp(z). (65)

Iterative construction of wp(z) and limits z— 0 and z— 1 were described in Sec. IIT A. Limiting
behavior of the partition function Qp, is, from Eq. (29),

Opi=SpVp(R) = Ap(R)Sp, 0(2m) " = JJD<R)SD+3%03(253 ™)'+ 0p5(R),  (66)
=Sp(Vp(R) = Ap(R)oBp/D = JIp(R)0°Bp(4!D(D — 1)) + Op_5(R). (67)

Note that V(R) is the volume for one HS particle in the spherical cavity but Vol=0Qp,,,/S) is the
actual volume of the pore for the rigid particle composed by two point particles with fix separation
o, they are strongly different only for small R, in fact,

Vp(R) - Vol(R) o g\’D-1 (g)
Vo(R) _RBD{1_<R> 41 ]+05 R) (68)

The first correction to the one HS CPF is related to the volume coefficient of O and the next one
relates to the area coefficient as a consequence of Egs. (53) and (65). The relation may be
compactly written as o”~'*"S,,,, =23 bp,,, and is a direct consequence of Eqgs. (7) and (8). The
power at which Qp,,— 0, i.e., LDF is now, from Eq. (30),
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LDF= (D + 1)/2. (69)

When this system becomes caged it conforms a linear rigid rotator. The difference between LDF
in Eq. (69) and LDF in Eq. (59) is attributable to the relative distance between both HSs. Then we
interpret that LDF of Qp, corresponds to one degree of freedom from the relative distance between
both HS and (D+1)/2 corresponding to the LDF of Q) related to the rigid rotator degrees of
freedom.

B. The spherical pore with a hard core

Other closely related system is that of two particles confined in a spherical pore with a fixed
central hard core. The main interest to solve this pore shape is the study of the dimensional
crossover between D and D—1 dimensions, which happens when the internal core becomes so
large that the two HSs may only move on the surface of the D-sphere, an effective D—1 curved
dimensional space. This type of nonplanar surfaces was introduced by Kratky26 in the study of the
HS homogeneous systems. Exact results for two, three, and four hard particles confined in this
non-Euclidean surface embedded in D=3 have been reported.41 Besides, the 2-HS-HWSP with a
hard core (2-HS-HWSP+HC) is by itself interesting cause it is a highly nontrivial concave pore.
The actual volume of the system is V,(R)—V,(R—-h), being R—h=0 the radius of the core and
0=h<R. The CI of 2-HS-HWSP+HC was written in Eq. (1) but Eq. (3) must be replaced by
e;=exp[—Bi(r)]=O(R-r;)-O(R-h-r;). Expanding the product of Heaviside functions we ob-
tain

2R 2(R-h)
Op(R,h) =SpVp(R) f P~ Ywp(rI2R)dr + SpVp(R - h) =Y (r/2(R = h))dr
o min(o,2(R-h))
2R-h
—28,Vp(R = hi2) P (r/(2R = h),h/(2R — h))dr, (70)
min(o,2R—h)

where we have made explicit the conditions on the integration intervals. From them, we observe
that CI breaks in three branches depending on o=2(R—h) or 2(R-h)<o=2R-h or 2R-h<o
=2R. Last row also shows that CI separates in two branches according to Eq. (14) depending on
o=h or not. Equation (70) becomes

Op(R.h) = VB(R)gp(z) + VH(R = OQ2(R - h) = 0)qp(a/2(R = h)) = 2VH(R)O(2R — h
1
- 0)2"D f Y wip(y,A)dy = 20(2R - h = 0)O(h = ) Vp(R = ) (Vp(h) = Vip(0),

(71)

being R=R—h/2 and r=max(A,o/2R). It is clear from Eqs. (71) and (31) that at each branch Q,,
is a finite power series in R, &, and o only for odd dimension. The dimensional systematic of the
integral in (71) becomes a complex task, then we only analyze with more detail D=3 and some
characteristics for D=2, 4, and 5. For D=3 we evaluate the integral to obtain an explicit expres-
sion for the partition function, here we present the result for c=<2(R-h),

Vol? = Vol 2b; + Ar 2a; — Cur 28", if h=0
05(R,h) =1 Vol> = Vol 2b; + Ar 2a;\ (8 — 6\ + \¥)/3+ (72)
— Cur 28\3(8 - 9\ +2)\%), if h<o,

where A=A/, and Vol, Ar, and Cur are the measurements of volume, surface area, and boundary
quadratic curvature for the actual pore, i.e., Vol=V;3(R)—V;3(R—h), Ar=A;(R)+A3(R-h), and
Cur=JJ5(R)+JJ5(R—h)=2m. Noticeable, the partition function is polynomial in each domain and
has continuous second derivative in ~=o0 but a discontinuous third derivative. It is surprising that
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the volume coefficient 2b5 and the entire partition function when 4= o looks exactly equal to Q5
[see Eq. (53) and Ref. 49] with different volume, area, and curvature measures. We also have
established that the central position of the fixed hard core is not essential, first row of Eq. (72) is
valid for any internal fixed hard core as long as its boundary is separated from the outer spherical
pore wall a distance =o. The limiting behavior as h— 0 to first non-null order in # is, from Eq.
(72),

O3(R,h < 0) = K*(A5(R) — A3(R)m0?) + O3(h) = h°S3A3(R)(R* = (072)%) + O5(h),  (73)

coincidentally b,= o is equal to the first nonideal gas correction. Here Q goes to zero as 42, i.e.,
the system lost two degrees of freedom. It is an expected property, which must be valid indepen-
dently of the dimension and even the number of particles, Q,(R) =h" for R large enough. After
goes to zero, Q/h? goes to zero as (R—o7/2) it is the caging limit. In the 2-HS-HWSP in D=3,
three degrees of freedom are lost when R— a/2 [see Egs. (49), (57), and (58)] as the system
becomes caged, in the spherical pore with an internal core they are lost in two steps.

The study of the systematic dependence on the dimension number of the #— 0 limit is not
easily available from Eq. (70). However, from Eq. (71) we find that the partition function for &
—0 is Qp=h>Qp,+05(h) with Qp, the CI for both HSs confined to the surface of the
D-dimensional sphere also known as the calottes problem.41 By means of two stick transforma-
tion, the Qp,; may be expressed as

R1+R2
Ops = Spdg19ga0p(R1,R)|r1=r2=r = SDaRlasz Wp(r,R.R)Pdrgigog,  (74)
g

where Qp(R,R,) is the CI in Eq. (18) but with a different confinement radius for each particle,
which is known for D=2,3.49 Here, we transform the e,, eg Heaviside functions on Egs. (1) and
(17) into Dirac delta functions through the derivatives —dg,, sticking both HS on the surface. For
practical purposes is much easier to evaluate Qp,, from

m—d

Qp)s=Ap(R)Sp_RP! j sin®2(6)d o, (75)
0

Opis= A%)(R) MD—z(Z) s (76)

where Ap(R) is the system volume and the minimum angular distance between particles is d
=2 arcsin(z). Here up_5(z) is the reduced partition function which plays the same role that g,
played in the HWSP, then we define g, (z) =up_»(z). As far as the iterative construction of the
up(z) functions was previously described we present the function for D=1, 2, 3, 4, and 5,

ql/s(z) = l’ (77)

2
qa5(2) = ;arccos(z), (78)
qas(D)=1-22, (79)

2 —
Gus(z) = ;[arccos(z) +\1=7%2(1 -229)], (80)
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qs;s(2) = 1 =3z*+ 225, (81)

an extra 1/2 factor must be considered in Eq. (77) due to a kind of ergodic to nonergodic transi-
tion. The asymptotic behavior may be accomplished with the approximate series representations

1
for 4qp/s>

_D-3)D-1) , D-5D=-3)(D-1)

qpis(2)=1- ZD‘1C4[1 2+ 06(12):| . (82)

2p+1) - F (D +3)
qpis(2)= (1~ z%“”%{l - %(1 -2 +0,(1 - z%} , (83)

where C,=[((D-1)/2)B((D-1)/2,(D-1)/2)]"" and truncated terms in Eq. (82) are even powers
in z. A noticeable characteristic of both series is that they have the same numerical coefficients and
both are polynomial with 2(D—-2) degree for odd dimension. The approximate series for Qp, are
then

D-3
D-1

Opys=Ap(R) = Ap(R)2bp_y + JIp(R)2bp, @*m~ - 0p5(R), (84)

where we note that b,_=2map_, and the curvature coefficient is 6776(13122 in concordance with
Egs. (54) and (55), and

L (D-1)(7TD-9)

Op)s = OS(D—I)/ch(R _ 0./2)(0—1)/2 -0 2D+ 1) (R—-a/2) + 0‘20(R _ 0/2)2 ;

(85)

where C5=22P-UB,,/D and the low density limit implies a vanishing curvature limit too. From
Eq. (84) we may obtain the first cluster integral correction due to the space curvature for this
non-Euclidean container or spherical boundary conditions. We may compare the first cluster inte-
gral in the (D—1)-euclidean space 2b;_; with the cluster integral in the surface of a sphere in
D-dimensions 2bp,,=(Qps—A2(R))/Ap(R), only for D=3 we have 2by,,=2b,_;, for any dimen-
sion we obtain lim 2bp,=2b,_;. Partition functions for D=2, 4, and 5 are

R—o0

021 = AR) ~ Ao(R)S, arcsin(2), (86)
Qys = (mRY)?(1 — arcsin(z) + z(1 = 22%)(1 = 29)13), (87)

dqr 2 o\? o\?
0s,s=A3(R) = As(R)m0*/2 + A5(R) - R>7*0%/12 = <?\E> RZ(R— E) <R+ 5) (2R*+ 7).

(88)

Analyzing the way in which Q) goes to zero we obtain from Eq. (83) that

LDF=(D-1)2=(D+3)/2-2, (89)

i.e., two LDFs from Qj correspond to the confinement of both particles on the cavity surface.
Now, we are able to extend the results about LDF in Qp, Op,,, and Qp,, we may argue that if we
stick both particles between them and to the surface, we find
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TABLE I. Several constant coefficients of the series representation of Cls and other functions. Some values for
D=-1 and 0 correspond to a suitable limiting behavior.

D

Coeff. Eq. -1 0 1 2 3 4 5

Sy 9) —r! 0 2 27 4 272 87/3

2bp/ o (8) and (53) 7! 1 2 w 4/3 p) 8m/15

2ap/ o' (53) 12 2/3 w4 4m/15 w12

2681 0P3 (53) 1/60 /288 /378 /1536

Cio 2P 12 1 2 4 8 16 32

Ci. (52) -112 0 25/(3m) 9 219/ (15m) 50

-Cy5 (52) 0 0 0 2%(15m) 2 2%/(21) 25

Cao (57) “e 0 4 2515w 32 2'9/(105m) 25/4

Ca, (57) 7m0 12 3/14 —1/8 —12 -9/10

LDF (57)-(59) 1 15 2 25 3 35 4

Csy (58) 0 4 20r/15 8m/3 2713/ 105 417419

Cs, (58) <o =170 0 19/14 512 12 22/5

C, (82) 12 207 1 16/(3m) 3

Cs (85) 1 12 4/ 4 128/(3m) 48
LDF=(D-3)2=(D+3)/2-3, (90)

where each stick-bond transformation has reduced the LDF on one unit. The idea is that the same
final solidlike configuration can be obtained in several ways, but its state properties cannot depend
on the particular taken path. Therefore, to stick particles between them, next stick each particle to
the surface and finally cage the system must produce the same CI (basically the system free
energy) obtained directly from the caging of the 2-HS-HWSP (Table I).

V. MECHANICAL EQUILIBRIUM AND PRESSURE TENSOR

To make a more complete and microscopic characterization of the system it is necessary to
evaluate the pressure tensor. Briefly, pressure tensor, density, and external potential are related as
a consequence of the mechanical equilibrium by

V-P+pVy=0, (91)

where the explicit position dependence of the magnitudes has been dropped. In any inhomoge-
neous system the tensor can be split into

P=p3"'pld +PY, (92)

where Id is the D X D identity matrix and PY is the interaction part of the tensor.*® In systems with
spherical symmetry PY is diagonal with only two different components,9’40 the normal and tan-
gential components P% and PY,

PU=P1!61'AIA'+P][{(¢¢)+ élél"- AR o éD_2aD_2), (93)
where &, 91, e 91)_2 are the angular versors. Then, for systems with spherical symmetry, Eq. (91)

may be written as
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D-1

r

J,Py+

(Py—=Pr) + pd,ih=0. (94)

Further simplifications apply to a hard wall container, there p(r) is discontinuous at r=R but o(r)
is not [see Eq. (63)], we obtain from Eq. (94)

D-1
J,Py+ T(PN_PT):_E_Ié(r_R)Qs (95)

D-1

r

&rP]lV]"' (PIIV]_PYL'])z_B_IeA(r)arQ’ (96)
both equations are equivalent to Eq. (94) and then necessary conditions for an acceptable pressure
tensor definition. Nevertheless they are formally strongly different. The inhomogeneous term in
the differential equation (95) shows at the boundary a divergent singular contribution to the total
pressure components with zero contribution from positions inside and outside the boundary. Al-
though, inhomogeneous term in Eq. (96) shows at the boundary a discontinuous singular contri-
bution to PY components, with nonzero contribution from inside points. We will regress to this
issue in a forthcoming paragraph.

Turning now to the interaction part of pressure PU, it is known that its detailed expression is
nonunique. Particularly, different possible definitions of PV produce different values of pressure
tensor in inhomogeneous fluids.” In this work we adopt a pressure tensor definition extensively
utilized in MD simulations,* the components of the pressure tensor for the two body system are

Pan(r) = <riBFI17\B(rAB) Ar—r,)), (97)

been r“=r-4a and FZB(r):—(dd)/ dr)(r’/r) the component of the force between particles in the b
direction [see Eq. (3.20) in Ref. 36]. It has been argued that Eq. (97) can be obtained from the
Irving—Kirkwood pressure tensor with the assumption of short range interaction.* Interestingly,
the adopted definition for the pressure is an intrinsic two body emergent property which depends
only on the position of two particle coordinates and does not depend on any choice of an integra-
tion path. In the present problem it is important to notice that positions of both bodies are the point
of pressure evaluation r=r, and the integrated position ry in the mean value of Eq. (97). It is a
desirable property of PY(r) in any few-body system that the microscopic configurations with zero
probability to find a particle in position r must not contribute to the pressure. This property is not
accomplished by the Irving—Kirkwood choice for the pressure tensor. Equation (97) may be
written as

a b

, I'arl

PY(r) = (BOp) "ealr) f ¢hpen f A|BdrB, (98)
AB

where ryg=r—rg and e,z=38(ryg—0). Changing the integration variable to r,p and integrating
over the radial coordinate, one gets

Pé/b(”) = (ﬂQD)_la'DeA(r)f eB(rB)faABfZBdQABa (99)

with rg=|r—of,p| and # =f-b. The two independent components of this tensor are

PY(r) = (BQp) lea(r)dPSp_, f eg cos® @sin®~2 6d6, (100)
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FIG. 3. (Color online) Pressure tensor components. Continuous line corresponds to Py and dashed line to P;. Two cavity
sizes R/0=0.9 and R/o=1.2 and two different dimension D are shown. The arrows indicate R/ o values.

PY(r) = (BQp)'ex(r)aPSp_ (D - 1)-‘f eg sin” 6d6, (101)

where the integration interval (0, ) may be reduced to (6,,,, ) by the effect of eg, with 6.,
=0 if r<R-o0, Op,=m if [r—o|>R, and 6,,;,=m7—arccos(~R*+0>+r?)/(2ro) otherwise. Both
integrals expressed in terms of known functions are

Py(r)=(BOp) ' ea(n27'Vp(a)[Dwp_y(cos ) = (D = Dwp(cos a)], (102)

PL(r) = (BOp) lea(n27Vp(a)wp(cos a), (103)

where cos a=1 if r>R+0, cos a=-sign(R-0) if r<R—o and cos a=(-R>+0>+r%)/(2ro) if
R—-o=r=R+o. Figure 3 shows both pressure tensor components as a function of position into
the cavity. We observe that when the pore is big enough, R> o, a pressure plateau develops at the
center of the pore in the range 0 =r<<R-o. In the region R—o=r<R the inhomogeneous pres-
sure region develops. The shape of pressure tensor and density profiles are simply correlated (see
Fig. 2 in Ref. 49), their constant value plateau and inhomogeneous regions coincide, even more,
when plateau density becomes null, pressure goes to zero too. In the homogeneous region the
normal and tangential components of the pressure tensor become equal, and the pressure tensor
reduces to a constant scalar pressure P0.9 In this case Egs. (102) and (103) lead to

PII\JI,T(O) =P =(BQp)"2bp, (104)

finally, according to Eq. (92) the pressure in the homogeneous density plateau is

2b
BPy=po+—2=2(Vp—bp)IQp (105)
Op

for R=0 while BPy=0 for 0/2=R<o. The value of the pressure tensor at contact can be
obtained from Egs. (102) and (103) with r=R and cos a=z=0¢/(2R) but no further simplification
may be done. In Fig. 4 we plotted the characteristic values of the pressure tensor. There we can
observe that the maximum of P is attained at smaller R than the maximum of the density (see Fig.
2). We have verified that in the inhomogeneous region abs(R— o) =r=R, Eq. (96) with Py r from
Egs. (102) and (103) is false. Two probable reasons may be argued, the invalid short range
hypothesis for the HS potential for nonuniform density and/or the incorrect pressure tensor defi-
nition of Eq. (97) due to the hard wall boundary condition [see Eq. (3.5) in Ref. 40]. As far as the
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FIG. 4. (Color online) Characteristic values of pressure tensor. Pressure at the central plateau P, (continuous line) and
contact value (r=R) of both components Py and P; (dashed line and dash-dotted line) as a function of pore size. From top
to bottom dimensions D=3, 5, and 7 in triangles, squares, and circles.

mechanical equilibrium of Eq. (96) is still valid in the homogeneous plateau, and pressure should
not strongly depend on the definition details in this region, we accept the validity of the obtained
pressure tensor for 0 <<r<<abs(R-o). It is particularly interesting to analyze the point r=R where
we find 3,0>0. We may note that the discontinuous behavior of PY (but not of PY) at r=R
violates Eq. (96). The existence of the Heaviside factor e4(r) on the right hand side of Eq. (96)
must be balanced with the same global factor at the left side and forbids the appearance of an
uncompensated Dirac delta. However, the derivative of a discontinuous P,L\,[ just produce a singular
Dirac delta at r=R. If we assume the validity of this equation one obtains that the discontinuity is
completely unphysical. Thus, we need the continuity of the interaction normal component of the
pressure tensor to overcome the mismatch.

VI. THE EOS AND THE LAPLACE EQUATION

We are interested in the EOS of the 2-HS-HWSP, i.e., the thermodynamic description of the
complete inhomogeneous system. We adopt a point of view usually taken in spherical droplets
which makes a description in terms of the properties in the homogeneous regions of the system. In
this section we drop any explicit unnecessary D subindex and dependence on cavity size R, then
V=Vp(R), 0=0p(R), and so on. The properties in the homogeneous region may be found from
Egs. (61) and (105). From these equations, for R> ¢ we obtain

P b
BRo_142 P (106)
Po 21-bp
1 -1
=1+ S(vi2b- 1), (107)

where the compressibility factor at the constant density plateau is a simple function of p or V. We
may note that both expressions diverge at R=0 and V=2b. For this pore size the plateau of
constant density vanishes and p,=0. Interestingly, in Eq. (107) we have found the bulk van der
Waals EOS without the attractive term, the only flavor remaining the two body system is a 1/2
factor. Owing to Eq. (106) does not depend on geometrical parameters which resembles the
cavity’s spherical symmetry it should be valid also for 2-HS confined in pores with other geom-
etries. In Egs. (106) and (107) Py, py, and p (or V) are not independent variables, even, they are
functions of system’s size R. Equation (106) can be written in two forms which resemble the
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contact theorem for the bulk homogeneous HS system [see Eq. (2.5.26) in Ref. 16 and also Ref.
42],

ﬁP0=P0+b52_g(U), (108)
w(z)

_ é 2 q(2)

=po+ 2Po—(l EEWCE (109)

where, in fact, g(o)/w(z)=(2¢(z))~! and then g(o)/w(z) — 1/2 when R— . Equations (108) and
(109) make sense only for 0=z<1/2 or o <R=o, where for the smallest pore (R=0 and z
=1/2) py=0. In such a case, the term which multiply p* in Eq. (108) takes a finite value, but the
term which multiply p2 in Eq. (109) diverges. However, Eq. (109) goes to zero. This shows an
only apparent different behavior because Eqs. (108) and (109) are different representations of the
same equation. At large R the overall and plateau densities are related by

_ a_ _ —
po=p=5P°AR) =p—Cep™" ", (110)
with C¢=(DP~12718,,)"Pa, and A(R) ~ pa(D_l)/D ~p P=DD for D> 1. Polynomial expressions for
the pressure as a function of density may be found by considering the firsts terms of Py as a
density power series,

b, b* 5 b
BPo=po+ 2Py + 5 po+  po(2b7 + aA(R)), (111)
b, 1
=p+ 552+ 553(b2—aA(R)). (112)

Here we choose two density parametrization, the plateau density and rough density, p, and p,
respectively. The expansions in Egs. (111) and (112) end at the order of the first signature of the
inhomogeneity. Both equations show that the first correction to the ideal gas behavior is positive
and involves the expected closed system correction.” Besides, Egs. (111) and (112) involve terms
with higher powers in the density than 2. This feature may sound conflicting in a two body system,
but, in fact, it is a direct consequence of the fixed number of particles that characterizes the
canonical ensemble approach. In Fig. 5 we plot the pressure in the homogeneous plateau as a
function of both density parameters. In Fig. 5(a) we adopt the plateau density po. There, an
important characteristic is apparent, for small cavities 0/2<R< ¢, we obtain p,=0 and P,=0
(see also Figs. 2 and 3). The anomalous bivalued behavior of Py(p,) is a consequence of the
nonmonotonic behavior of the density in the homogeneous region as was shown in Fig. 2. In Fig.
5(b) we adopt the rough density p. For Py(p) we find a simpler general dependence with a
monotonic behavior until p=2/V(1) is reached. Note that the maximum attainable density is
Pmax=2/V(1/2). In both Figs. 5(a) and 5(b) the pressure attains its maximum when the density
plateau disappears at R=0 and then pressure drops discontinuously to zero. Interestingly, both
used density parameters {py,p} are usually utilized to describe the behavior of macroscopic fluid
systems. From an opposite point of view, we may concentrate in the external force and on contact
properties. From the wall theorem''® the total scalar force between the wall and the HS system in
a pressure form is

dr In(Q) - A(R)™' = BPy=p,, (113)

with p, from Eq. (62). The general features of B8Py/(R) for D=2 and 3 can be seen in Fig. 1 of Ref.
49. There, the basic systematic behavior with increasing dimensionality is apparent. As a conse-
quence of the chain rule of the derivative and the sticky-bond transformation the numerator of p,.
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FIG. 5. (Color online) Pressure in the homogeneous plateau. From top to bottom D=2, 3, 4, and 5. Two different choices
of density parameter are depicted. At left hand side (a), in dashed line we adopt the p, as density parameter. At right hand
side (b), in continuous line we adopt the rough density p.

is the CI of one HS in a diminished volume. The allowed volume for the HS particle is the free
volume available when the other HS is sticked to the surface. The asymptotic behavior of Py, may
be obtained from Egs. (53) and (58). For D=2 and 3 it was studied in Ref. 49. In the caging limit,
when R— a/2, Py diverges as

P ~D—+3(R i'>_1 (114)
k Y 24(012) 2)

P D+3
B D o= 1y, (115)
p

where V,=V(0/2) and the expressions in Egs. (114) and (115) are consistent to order —1 in (R
—0/2) and (V/Vy—1). The same power dependence of the compressibility factor was found for the
caging limit of N-HS systems under periodic boundary conditions.** A comparison between Egs.
(107) and (115) shows an interesting similarity at D=3.

Finally, we shall study the surface tension of the system. Due to the failure of the obtained
pressure tensor, we cannot evaluate a microscopic expression for the surface tension, however, we
may adopt a macroscopic approach. Identifying the radius of the dividing interface with R we
define y by

Bja;(R)=pc_BPO=BAP7 (116)

where at the left hand side appears the pressure difference AP=Py,— P,. If we identify ¥ with the
surface tension, Eq. (116) is the original version of Laplace equation applied to a spherical
substrate-fluid interface.!’ Besides, for D=1 or R— % we obtain the planar equilibrium condition
p.=PBP,. Figure 6 shows ¥ for different radii and several dimensions D > 1. Some general features
are: it is a positive defined quantity; at large R the value of y goes to zero with an expected power
law dependent on D; in the opposite, as R/o— 1/2 ¥ increases indefinitely as p, do. It can be
observed a finite jump at R/o=1 due to a discontinuity in P,. Probably such discontinuities in P
and 7y are unphysical artifacts of the adopted definition for Pfl]b(r). For R> o we have

Biy=2[V-(1-c(z))b-V+blQ,

=2bc(z)/Q, (117)
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FIG. 6. (Color online) Function ¥ and its dependence on pore radius for several dimensions. The dashed line shows the
discontinuity at R/o=1.

c(z)=1-wp(z) - 22) Pwp(1 -22%), (118)

where 0<c(z) <1 and the most relevant terms of ¢(z) are

=3 (119)

c(z) =(D-1)Bpz 2(D+1)‘1—mz ,

where for D=3 we obtain the somewhat surprising result c(z)=z3/4. To first non-null order in
density and curvature we obtain

By~ gpz_ 827D - (D= 3R, (120)

where the first term does not show any curvature dependence. In addition, to the same order of
accuracy in density, we may replace p— po,. We identify the first density-noncurvature term as
BYna=al2p*. To first non-null order we obtain

2
g\ (D-3)(D+1
_) (D-3)D+1) 121)

Ty =1 = —
e (R 24(D +3)

where the right hand term becomes null for D=3. Unfortunately 7 is not the surface tension but,
in fact, it is an excess free work. A better proposal for the definition of the surface tension vy is a
refined version of the Laplace equation,20

dry+jy=AP, (122)

where AP=j%. Definition from Eq. (122) separates an explicit curvature dependent term from
AP." The asymptotic behavior of AP is essentially described in Eq. (120), from that we obtain for
the surface tension
2
D-1)D+1
g> (-DD+1) 123)

fy =1 = —
Y Voat (R 24(D +3)

where now, the right hand term becomes null at D=1. We may study the same system from a
different radii which is an interesting point of view principally for nonsharp interfaces usually
found in fluid droplets. Being R”"=R+¢ and following Henderson,”® we define
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J(R)BY(R) =j(R")BY(R.R") + Bigny(R.R"), (124)
its solution is
1 -1 [ R\P-!
BV(R,R”)=,37(R)D{(D—1)(R,,) +(ﬁ) } (125)
and then
eR® 1= 2) o £). (126)

showing that first correction is second order in &/R and positive for D> 1.

We expect that several of the above expressions may be generalized for any number of
particles N with the addition of the overall N-dependent correction factor.”® Here we do not
demonstrate but merely suggest that Eq. (120) should be multiplied by 2(1-N~') at right hand
side”® to become valid to the same order in density and curvature. The same modification applies
to ¥pa- However, this prefactor does not modify the ratios in Eqs. (121) and (123). Therefore, for
a large enough R we obtain for the N-HS-HWSP system in D dimensions

BYnu=a(l —=N"p, (127)

(oD -DD+1)
y/mn—l——(R) —24(D+3) , (128)

both are new results even in the most interesting case of D=3. Furthermore, Eq. (127) represents
the first term of the density power series of the surface tension for any hard wall cavity. In
addition, Eq. (128) applies too for the conjugate system of a hard wall spherical core surrounded
by a HS fluid. Finally, we are interested in establishing some relations between the studied system
and the open (grand canonical ensemble) system of HS in contact with a hard spherical wall. The
low density limit of an inhomogeneous open system was studied by Bellemans and
Sokolowski-Stecki®** who found the surface tension virial series and apply it to the HS system in
contact with a planar hard wall (cite I Ref. 8 and I, III Ref. 45) and contained in a HWSP (cite III
in Ref. 8) in D=3. In the HS inhomogeneous fluid in a HWSP the 1y first power density coefficient
and zero order in curvature is the same that appears when a planar wall is studied [from area term
in Eq. (53)] Bo3'=W5*/Ap(R)=ap=bp,(27)~" which may be found by taking N—o in Eq.
(127). The first curvature correction of this should be é( Bellemans obtained that in three
dimensions this constant is null, 5562“—6{0 =0, and we obtam 6(0 =0 for D=2 [from the nonex-
istent RP~2 term in Eq. (53)], whereas the first non-null curvature correction is é(l) [from RP-3
curvature term in Eq. (53)]. To our best knowledge, all this properties have been never studied or
evaluated for D#2 and 3,***** and here we are showing the systematic dimensional depen-
dence in terms of the second cluster integral coefficient in a higher dimensionality space [see Eq.
(55)]. Concisely, Eq. (4.5) in II1, Ref. 8, for a D dimensional system must be written as

S0
Y Yo~ 1 = —jzai +0,(R™)+0(p)O(R™),
D

N (g)z(D— (D +1)
\R

24(D+3) (129)

where now 7, 1s the surface tension of the open system in contact with a planar wall. An
interesting fact is that first correction is then quadratic in curvature and zero order in density.
Besides, for a HS fluid in contact with a hard convex spherical wall (sometimes referred in the
literature as a spherical cavity inside of the bulk fluid), this first order curvature correction should
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be exactly the same. The term proportional to —R~2 in Eq. (129) is 1/40 and 1/18 for D=2 and 3,
respectively, and becomes greater than 1 for D=27. A consequence of Eq. (129) is that the
Tolman length of the athermal system of HS-HWSP scales as ™'~ p for low density. It seems
that the study of the three particle system will provide the value of the proportionality constant.
We may conclude this section by noting that a curvature correction proportional to o/R should
exist at Egs. (121) and (128) if we consider a somewhat more realistic potentials with soft
repulsion and/or attractive well.

Here, we have presented a study of the bulk properties of a system consisting in 2HS-HWSP.
In such an analysis we followed deliberately a nonthermodynamic approach. Even when it may be
unexpected, the direct derivation of properties such as the pressure and surface tension using a
thermodynamic approach is not a simple task.” The full implementation of this path requires a
careful evaluation of several problems related with the nonextensivity of the system. This subject
will be analyzed in an incoming work.

VIl. FINAL REMARKS

The few-body system consisting of two HSs in a spherical pore in any dimension has been
studied in the framework of the canonical ensemble of statistical mechanics. It was showed that
several properties of such an inhomogeneous spherical system can be exactly evaluated. Analytical

exact expressions for the CPF Qp, density distribution function p(r), and pressure tensor P(r) were
obtained. The iterative construction of these functions in terms of the same properties for dimen-
sions lower than D was performed. We should emphasize that neither approximations nor power
series truncation were done along these derivations. The studies of the analytical properties of CI
at the low density limit or large R value and the highly confinement limit or final solid were
analyzed. We found that properties at both limits are correlated. This becomes clear for odd D
values where the CI is a polynomial and low density limit involves high order R monomials,
although caging limit properties relate with the degree of the zero of CI at R=0/2. We found that
such zero is of order of (D+3)/2.

Other systems which are closely related to the 2-HS-HWSP have been also analyzed. The
system of two sticky HS or rigid linear body into a spherical pore was tackled. The two HS into
a spherical pore with a smaller internal and fixed hard core was studied with special emphasis in
the limit of on surface confinement. Several exact relations between the three closely related
systems were established by applying the sticky-bond transformation which makes possible their
unified study. It was examined the way in which properties of the three systems become strongly
dependent on the low density regime and on the opposite caging limit. Several equations that
relates the coefficients of these systems were obtained.

The pressure tensor of the 2-HS-HWSP was investigated. The re-examination of the mechani-
cal equilibrium condition for a system with a hard spherical boundary was done. New constraints
between nonideal pressure tensor components and one body distribution function slope at contact
with the curved wall were obtained. The analytical evaluation of one possible definition of the
pressure was performed. The obtained expression disregards the former equilibrium condition and
therefore the used pressure tensor definition must be considered incorrect or at most approximate.

The EOS of 2-HS-HWSP system was studied. We have analytically evaluated the pressure-
density relation and the surface tension. In connection with the open system of HS in a HWSP, our
results are consistent with that obtained by Bellemans,® the first correction in the surface tension
due to the curvature in the confining surface is not of order R~! in three dimensions. We also show
[see Egs. (53), (55), and (129)] that the first correction has order R~2 independently of the system’s
dimensionality and is zero order in density. In addition we determined the value of the coefficients
corresponding to the first inhomogeneous and first nonplanar wall corrections for all dimensions,
Eqs. (54) and (55). To the best of our knowledge, it is the first time that both coefficients are
evaluated.

The in-out relation introduced in Ref. 49 and described in Sec. II, the stick transformation
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introduced in Sec. IV, and several results [e.g., Egs. (53), (66), (72), and (84)] suggest interesting
links with the mathematical theory of convex bodies also known as integral geometry35’37 that will
be studied in future works.
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APPENDIX A: PROPERTIES OF wp(y,A)

This appendix is devoted to the iterative construction of wp(y,A). The procedure to iteratively
build wp(y,A) is traced from Eqs. (23) and (31), where the last one applies only for A=y=1. We
define the complementary function of wp(y,A) [see Eq. (31)], wp(y,A)

Fp(y,A) = 3(1+48) wp(x') = 5(1 = 4)Pwp(x"). (A1)

with x"=r"/2R,;=(y*+A)/[y(1+A)] and x"=r"/2R,=(y*~A)/[y(1-A)]. From the definition of
wp(y,A) (31), replacing wp(x) with the aid of Eq. (23) and rearranging terms, we obtain

R D
wp(1,A) = (1 + A?)wp_o(y,A) + 2A7,_5(y,A) — ((%) x'(1=x'%)-Dr2
R

R D
+ ( —2> x(1- x”2)<D—1>’2) By/D. (A2)
R

Following a similar approach with Eq. (A1) and writing {R,,R,} in terms of y and A, we obtain the
iterative relations,

wp(,A) = (1+ A wp_(1,A) + 28 (v, A) = y*P((1 = y?) (3> = A%))P-D22B /D,

(A3)
Wp(1,A) =28wp (1, A) + (1 + A% 5(y,A) = Ay™P((1 - yH) (v* =A%) PV22B /D
(A4)
First functions of the series are

w_(y,4) = 1/(1 - A%, (AS5)
Wi (y,A) == A/(1-A?), (A6)

1 24 A 2_A
wo(y,A) = ;{MCCOS<§1 : A)) + arccos(y)()1 ) )} , (A7)

1 24 A 2_A
wo(y,A) = ;{arccos(yil : A)) - arccos(y(1 ) )] , (A8)
wi(y,A)=1-y. (A9)

wi(y,A)=—A(1 - y)/y. (A10)
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APPENDIX B: PROPERTIES OF gp(z) AND up(2)

This appendix is devoted to deduct a few properties of functions g (z) and up(z). We begin
summarizing four properties of I, (a,b) (from Refs. 1 and 2, p. 944),

I(a,b)=1-1,_\b,a), (B1)

-1w1 (a+c,b), (B2)

“'(a,b)dx=c"'xI,(a,b) -
fx dab)dx=c"xT(a,b) - c Fa)(a+b+c) ™

I(a,b)=I(a+1,b)+ (aB(a,b))"'x*(1 - x)°, (B3)

I(a,a) =271 _yu _1pp(a,1/2),  with x=1/2. (B4)
The deduction in Egs. (41) and (44) for ¢(z) follows from the definition on Eq. (18),

1
qp(z) = 2DDf 2P Ywp(x)dx, (B5)

where 0<z<1, which may be rearranged using Egs. (19) and (B1),

1
qp(z) =2PD f P _o((D + 1)/2,1/2)dt,

z
Z

1
=2P(1-7")-2P"'p J P2 (172,(D + 1)12)dr, (B6)
2
Z
integrating on through identity (B2), and using Eq. (B1) and definitions of Egs. (19) and (41),

ap(z) =2P(1 = %) = 2P(P21,(1/2,(D + 1)/2) = 27PL((D + 1)/2), (D +1)/12))|}2
=2P(1 - 2P) = 2P1,(1/2,(D + 1)/2) + (22)P12(1/2,(D + 1)/2) + [,((D + 1)/2,(D + 1)/2)
—I2((D+1)/2,(D +1)/2)
=—(22)P1_2((D + 1)/2,1/2) + I, _2((D + 1)/2,(D + 1)/2)
=up(z) — (22)°wp(2). (B7)

Interestingly, the above expressions may transform to show a complete dependence on wp(z).
Using the identity (B4) and the analytic extension of wp(z) (10) we find up(z)=2""wp(z") with
7/=27%—1 and

qp(2) =27'wp(z") = (22)Pwp(2), (B8)

therefore, ¢;(z) may be built in terms of the recurrence relation, Eq. (23). With the purpose to
deduce Eq. (44) we will find some identities not available in the literature of Refs. 1 and 2. From
(B1) and (B3) we obtain

I_(a,b)=1,_(a,b+1) = (bB(a,b)) 'x"(1 - x)*, (B9)

I_(a,b) =1,_(a+1,b) + (aB(a,b))"'x(1 — x)*, (B10)

applying both recurrence relations, we find
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I_(a+1,b+1)=1,_J(a,b) + (abB(a,b)/(a+ b))~ 'x"(1 - x)"( ¢ _ x), (B11)
a+b
2I'(2a) 1
Ila+1,a+1)=1,_(a,a)+ aFT(a“)xau -x)a<5 —x), (B12)
and then using Eq. (41)
up(z) =up_o(z) + %zml(l - zz)(D_l)Q(% - z2> . (B13)

From Eq. (41) the first functions uj(z) of the series may be obtained [see Egs. (42) and (43)].
Finally, we may mention that g,(z) could be also defined as the solution of the second order
differential equation,

qp— (D= 1)z 9.qp=2P"BpD(X(1 - 22) P~V (B14)

with boundary conditions ¢;(0)=1 and ¢,(1)=0.
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