Artículo

Abstract:

In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd), 1 < p < + ∞. The novelty and difficulty of this construction is that we allow for non-lattice translations.We prove that for an arbitrary expansive matrix A and any set Λ-satisfying a certain spreadness condition but otherwise irregular-there exists a smooth window whose translations along the elements of Λ and dilations by powers of A provide an atomic decomposition for the whole range of the anisotropic Triebel-Lizorkin spaces. The generating window can be either chosen to be bandlimited or to have compact support.To derive these results we start with a known general "painless" construction that has recently appeared in the literature. We show that this construction extends to Besov and Triebel-Lizorkin spaces by providing adequate dual systems. © 2012 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
Autor:Cabrelli, C.; Molter, U.; Romero, J.L.
Filiación:Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Capital Federal, Argentina
IMAS, UBA-CONICET, Argentina
Palabras clave:Affine systems; Anisotropic function spaces; Besov spaces; Non-uniform atomic decomposition; Triebel-Lizorkin spaces
Año:2013
Volumen:232
Número:1
Página de inicio:98
Página de fin:120
DOI: http://dx.doi.org/10.1016/j.aim.2012.09.026
Título revista:Advances in Mathematics
Título revista abreviado:Adv. Math.
ISSN:00018708
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00018708_v232_n1_p98_Cabrelli.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v232_n1_p98_Cabrelli

Referencias:

  • Aimar, H.A., Bernardis, A.L., Gorosito, O.P., Perturbations of the Haar wavelet by convolution (2001) Proc. Amer. Math. Soc., 129 (12), pp. 3619-3621. , (electronic)
  • Aldroubi, A., Cabrelli, C., Molter, U., Wavelets on irregular grids with arbitrary dilation matrices, and frame atoms for L2(Rd) (2004) Appl. Comput. Harmon. Anal., pp. 119-140. , Special issue on frames II
  • Balan, R.M., Casazza, P.G., Heil, C., Landau, Z., Density, overcompleteness, and localization of frames I: theory (2006) J. Fourier Anal. Appl., 12 (2), pp. 105-143
  • Balan, R.M., Casazza, P.G., Heil, C., Landau, Z., Density, overcompleteness, and localization of frames II: Gabor frames (2006) J. Fourier Anal. Appl., 12 (3), pp. 307-344
  • Beurling, A., Local harmonic analysis with some applications to differential operators (1966) Some Recent Advances in the Basic Sciences, Vol. 1 (Proc. Annual Sci. Conf., Belfer Grad. School Sci., Yeshiva Univ., New York, 1962-1964), pp. 109-125. , Belfer Graduate School of Science, Yeshiva Univ
  • Bownik, M., The construction of r-regular wavelets for arbitrary dilations (2001) J. Fourier Anal. Appl., 7 (5), pp. 489-506
  • Bownik, M., Anisotropic Hardy spaces and wavelets (2003) Mem. Amer. Math. Soc., 781, p. 122
  • Bownik, M., Atomic and molecular decompositions of anisotropic Besov spaces (2005) Math. Z., 250 (3), pp. 539-571
  • Bownik, M., Anisotropic Triebel-Lizorkin spaces with doubling measures (2007) J. Geom. Anal., 17 (3), pp. 387-424
  • Bownik, M., Duality and interpolation of anisotropic Triebel-Lizorkin spaces (2008) Math. Z., 259 (1), pp. 131-169
  • Bownik, M., Ho, K.-P., Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces (2006) Trans. Amer. Math. Soc., 358 (4), pp. 1469-1510
  • Bownik, M., Speegle, D., Meyer type wavelet bases in R2 (2002) J. Approx. Theory, 116 (1), pp. 49-75
  • Bui, H.-Q., Laugesen, R., Frequency-scale frames and the solution of the Mexican hat problem (2011) Constr. Approx., 33 (2), pp. 163-189
  • Bui, H.-Q., Laugesen, R., Wavelets in Littlewood-Paley space, and Mexican hat completeness (2011) Appl. Comput. Harmon. Anal., 30 (2), pp. 204-213
  • Dai, X., Larson, D.R., Speegle, D.M., Wavelet sets in Rn (1997) J. Fourier Anal. Appl., 3 (4), pp. 451-456
  • Daubechies, I., Grossmann, A., Meyer, Y., Painless nonorthogonal expansions (1986) J. Math. Phys., 27 (5), pp. 1271-1283
  • Feichtinger, H.G., Banach spaces of distributions defined by decomposition methods. II (1987) Math. Nachr., 132, pp. 207-237
  • Feichtinger, H.G., Gröbner, P., Banach spaces of distributions defined by decomposition methods. I (1985) Math. Nachr., 123, pp. 97-120
  • Feichtinger, H.G., Gröchenig, K., Banach spaces related to integrable group representations and their atomic decompositions, I (1989) J. Funct. Anal., 86 (2), pp. 307-340
  • Fornasier, M., Gröchenig, K., Intrinsic localization of frames (2005) Constr. Approx., 22 (3), pp. 395-415
  • Frazier, M., Jawerth, B., Decomposition of Besov spaces (1985) Indiana Univ. Math. J., 34, pp. 777-799
  • Frazier, M., Jawerth, B., A discrete transform and decompositions of distribution spaces (1990) J. Funct. Anal., 93 (1), pp. 34-170
  • Frazier, M.W., Jawerth, B.D., Weiss, G., (1991) Littlewood-Paley Theory and the Study of Function Spaces, , American Mathematical Society
  • Garrigós, G., Tabacco, A., Wavelet decompositions of anisotropic Besov spaces (2002) Math. Nachr., pp. 80-102
  • Gilbert, J.E., Han, Y.S., Hogan, J.A., Lakey, J.D., Weiland, D., Weiss, G., Smooth molecular decompositions of functions and singular integral operators (2002) Mem. Amer. Math. Soc., 742, p. 74
  • Govil, N.K., Zalik, R.A., Perturbations of the Haar wavelet (1997) Proc. Amer. Math. Soc., 125 (11), pp. 3363-3370
  • Gröchenig, K., Localization of frames, Banach frames, and the invertibility of the frame operator (2004) J. Fourier Anal. Appl., 10 (2), pp. 105-132
  • Gröchenig, K., Leinert, M., Wiener's lemma for twisted convolution and Gabor frames (2004) J. Amer. Math. Soc., 17, pp. 1-18
  • Kyriazis, G., Petrushev, P., New bases for Triebel-Lizorkin and Besov spaces (2002) Trans. Amer. Math. Soc., 354 (2), pp. 749-776. , (electronic)
  • Li, K., Sun, W., Convergence of wavelet frame operators as the sampling density tends to infinity (2012) Appl. Comput. Harmon. Anal., 33 (1), pp. 140-147
  • Long, T.D., Triebel, H., Equivalent norms and Schauder bases in anisotropic Besov spaces (1979) Proc. Roy. Soc. Edinburgh Sect. A, 84, pp. 177-183
  • Meyer, Y., Coifman, R.R., Wavelets: Calderón-Zygmund and Multilinear Operators (1997) Cambridge Studies in Advanced Mathematics, 48. , Cambridge University Press, Cambridge
  • Nielsen, M., Rasmussen, K., Compactly supported frames for decomposition spaces (2011) J. Fourier Anal. Appl., pp. 1-31
  • Petrushev, P., Bases consisting of rational functions of uniformly bounded degrees or more general functions (2000) J. Funct. Anal., 174 (1), pp. 18-75
  • Schmeisser, H.-J., Triebel, H., Anisotropic spaces. I: interpolation of abstract spaces and function spaces (1973) Math. Nachr., 73, pp. 107-123
  • Tchamitchian, P., Biorthogonalité et théorie des opérateurs (1987) Rev. Mat. Iberoam., 3 (2), p. 163
  • Tchamitchian, P., Calcul symbolique sur les opérateurs de Calderón-Zygmund et bases inconditionnelles de L2 (R) (1989) C. R. Acad. Sci. Paris, 129, pp. 641-649
  • Triebel, H., Wavelet bases in anisotropic function spaces (2004), pp. 370-387. , in: Function Spaces, Differential Operators and Nonlinear Analysis, Conference held in Svratka, May 2004 (Others); Wang, Y., Wavelets, tiling, and spectral sets (2002) Duke Math. J., 114 (1), pp. 43-57

Citas:

---------- APA ----------
Cabrelli, C., Molter, U. & Romero, J.L. (2013) . Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces. Advances in Mathematics, 232(1), 98-120.
http://dx.doi.org/10.1016/j.aim.2012.09.026
---------- CHICAGO ----------
Cabrelli, C., Molter, U., Romero, J.L. "Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces" . Advances in Mathematics 232, no. 1 (2013) : 98-120.
http://dx.doi.org/10.1016/j.aim.2012.09.026
---------- MLA ----------
Cabrelli, C., Molter, U., Romero, J.L. "Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces" . Advances in Mathematics, vol. 232, no. 1, 2013, pp. 98-120.
http://dx.doi.org/10.1016/j.aim.2012.09.026
---------- VANCOUVER ----------
Cabrelli, C., Molter, U., Romero, J.L. Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces. Adv. Math. 2013;232(1):98-120.
http://dx.doi.org/10.1016/j.aim.2012.09.026