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Abstract

In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide
class of functional spaces including the Lebesgue spaces L” R9),1 < p < +00. The novelty and difficulty
of this construction is that we allow for non-lattice translations.

We prove that for an arbitrary expansive matrix A and any set A—satisfying a certain spreadness
condition but otherwise irregular—there exists a smooth window whose translations along the elements
of /A and dilations by powers of A provide an atomic decomposition for the whole range of the anisotropic
Triebel-Lizorkin spaces. The generating window can be either chosen to be bandlimited or to have compact
support.

To derive these results we start with a known general “painless” construction that has recently appeared
in the literature. We show that this construction extends to Besov and Triebel-Lizorkin spaces by providing
adequate dual systems.
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1. Introduction

The membership of a distribution to a large number of classical functional spaces can be
characterized by its Littlewood—Paley decomposition, which consists of a sequence of smooth
frequency cut-offs at dyadic scales. The functional spaces that can be described in that way are
generically known as Besov and Triebel-Lizorkin spaces. This class includes among others the
Lebesgue spaces L”(R?), (1 < p < +00), Sobolev spaces and Lipschitz spaces.

More recently, anisotropic variants of these spaces have been introduced, where the dyadic
scales are replaced by more general ones allowing different spatial directions to be dilated by
different factors (see [31,35,24,38.,8,11,9,10] and the references therein). These variants are
useful for example to study anisotropic smoothness conditions.

Time-scale atomic decompositions are a very powerful tool to analyze Besov and Triebel—
Lizorkin spaces. The technique consists of representing a general distribution f € S’(R?) as a
superimposition of atoms {Y; x : j € Z, k € 74y,

£F=YY " cixtix.

J€Z keZd

The membership of f to a particular Besov or Triebel-Lizorkin space is characterized by
the decay of its coefficients c; . In the classical (isotropic) case, the atoms are of the form
Yikx) = 27J/24 (277 x — k), where v is an adequate window function called a wavelet. In the
anisotropic case a number of alternatives are possible. One of them is to replace the powers of 2
by powers of a more general matrix A, yielding atoms of the form,

{Idet(A)| /YA~ - k) | j € Z,k € Z%).

(See [38] for other alternatives.) The existence of atomic decompositions for anisotropic Besov
and Triebel-Lizorkin spaces is a well-known fact. There is an ample literature giving sets of
atoms with specific properties (see [38] and the references therein). The purpose of this article
is to show that these spaces also admit atomic decompositions where the integer translations are
replaced by translations along quite arbitrary sets. Given a matrix A € R¢*? that is expansive
(i.e. all its eigenvalues j satisfy || > 1) and a set 4 € R that satisfies a certain spreadness
condition but is otherwise irregular, we show that there exists a function ¢ € S such that the
irregular time-scale system,

W, A, A) == {|det(A)| />y (A~ - =0 | j e Z, 1 e A}, (1)

gives an atomic decomposition of the whole class of (anisotropic) Besov and Triebel-Lizorkin
spaces. The function ¥ can be chosen to be bandlimited or to have compact support (in this
latter case, since Y cannot have infinitely many vanishing moments, we have to restrict the
decomposition to a subclass of spaces having a bounded degree of smoothness).

This result is new even in the isotropic case. Its relevance stems from the fact that the
set of translation nodes A is not assumed to have any kind of regularity (besides a mild
spreadness condition). As a comparison to our work, the only results giving such irregular time-
scale decompositions that we are aware of are: the one that comes from the general theory of
atomic decompositions of coorbit spaces associated with group representations [19], and the
one obtained from oversampling Calderén’s continuous resolution of the identity [25,30]. These
prove the existence of time-scale atomic decompositions using irregular sets of translates, as
long as they are sufficiently dense (in a sense that may be hard to quantify). In contrast, our result
proves that any set of translates can be used (under a mild spreadness assumption).
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Moreover, the function ¥ is explicitly constructed following a very concrete method. In fact,
the starting point of the article is a construction in [2] that can be regarded as a generalization
of the so-called painless method of Daubechies et al. [16]—which we consequently call the
generalized painless method. It mainly consists of using a number of geometric barriers to ensure
the validity of the so-called frame inequality,

AllfIF. < D0 1A det(A) T2y A~ - =) < BIfI7..

Jj€Z,)eN

This is enough to deduce that the atoms in Eq. (1) give an atomic decomposition of L>(R¢). This
method of proof, however, does not provide an explicit dual system for those atoms, that is, an
explicit family of coefficient functional c; ; such that,

f=cjaldet(A) 2y (a7 -2, @)
I

The existence of such a dual system can be deduced by Hilbert space arguments, but not having
explicitly produced them it is not clear whether the expansion in Eq. (2) (valid in L?) extends to
an atomic decomposition of all (anisotropic) Besov and Triebel-Lizorkin spaces. This is not
a trivial question. In sheer contrast to the case of time—frequency analysis [27,28,3,4,20], it
is known that there exist “nice” (isotropic) time-scale systems satisfying the frame inequality
but failing to give an atomic decomposition for a certain range of L? spaces (1 < p < +400)
[36,37,32] (see also [13,14]).

We will show that every wavelet system constructed following the “generalized painless
method” yields an atomic decomposition of the class of anisotropic Besov—Triebel-Lizorkin
spaces. For atoms constructed following that method, each scale interacts with a bounded
number of other scales. Even having this property, the fact that a time-scale system satisfies
the frame inequality does not always imply that it gives an atomic decomposition of Besov and
Triebel-Lizorkin spaces. To prove the existence of well-behaved dual systems we need to resort
to certain results from A. Beurling on the balayage problem [5].

The generating windows of these constructions are band-limited. However, often it is desirable
to have generators that are compactly supported in time. We devote the last section of this article
to show how to adapt the previous results to obtain atomic decompositions with generators that
are smooth, compactly supported and with an arbitrary number of vanishing moments.

1.1. Overview of the results
The following is the main result of the article.

Theorem. Let A € RY be a set that is well-spread, that is,
sup #(AN ([—1/2,1/2]" + {x})) < 400,
xeRd
U Br(X) = RY, for some R > 0.
re/

Let A € R4*? be an expansive matrix (i.e. all its eigenvalues  satisfy || > 1).
Then there exists a Schwartz class function r with Fourier transform supported on a compact
set not containing the origin, such that the irregular wavelet system,

W, A, A) = {5 = |det(A)| /2y (A~ - —2) | j € Z,a e A},
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provides an atomic decomposition for the whole class of anisotropic Besov and Triebel-Lizorkin
spaces.

Alternatively, ¢ can be chosen to have compact support and an arbitrary large number of
vanishing moments, but in this case the decomposition is restricted to a subclass of spaces having
a bounded degree of smoothness. The meaning of the term “atomic decomposition” is carefully
discussed below (see Theorems 5 and 7). It implies that there is an expansion f = ) i CiaWia
valid in all Besov—Triebel-Lizorkin spaces and that the norm of f in those spaces is equivalent
to a suitable norm depending on the absolute value of the coefficients c; ;.

In addition to the oversampling results that provide irregular atomic decompositions when
A is sufficiently dense [19,25,30], we mention as related literature the work on wavelets sets
(see [15,39] and the references therein), where the existence of windows ¥ such that the time-
scale system W (¢, A, A) is an orthonormal basis of L? (Rd) is proved. In that work the Fourier
transform of  is the characteristic function of a set {2 that is related to A by a tiling condition.
This requires / to have a certain regularity (e.g. to be a translation of a subgroup of R?). When A
is a lattice and the matrix A is further assumed to preserve A —i.e. AA C A —even fast-decaying
wavelets are known to exist [6,12].

We stress that the window 1 is not only proved to exist, but it is obtained following a concrete
construction that we call the “generalized painless method” (see Section 2). We prove that the
irregular time-scale system thus constructed admits a suitable dual frame.

Besides the theoretical relevance of our result, frames with arbitrary translation nodes can be
useful in applications where data is modeled by irregular point sources, for example when it is
acquired from irregularly distributed measurements. In order for our result to have full practical
relevance the computability of the dual system should be investigated. We do not pursue this in
this article (see Section 7). However, the main result has the following consequence of practical
interest: if ¥ is constructed following the recipe in Section 2, then the membership of a function f
to all anisotropic Besov—Triebel-Lizorkin spaces can be characterized in terms of the size of the
numbers (f, ¥ ), which are computable. This means for example that asymptotic information
about the smoothness and p-integrability of a function f can be extracted from the size-profile
of the numbers (f, ¥ »).

1.2. Technical overview

The main technical point of this article is to combine the ¢-transform methods of Frazier and
Jawerth — and their recent extension to the anisotropic setting — with Beurling’s work on the
balayage problem.

The ¢-transform theory produces bandlimited windows that generate time-scale atomic
decompositions of the class of Besov—Triebel-Lizorkin spaces using translates along a lattice.

The balayage problem consists in deciding, given a compact set K € R? and a (possibly
discrete) set A C Rd, whether the Fourier transform of every measure coincides on K with the
Fourier transform of some measure supported on A. Beurling’s fundamental work gives sufficient
conditions for this, relating the size of K to the density of A.

The main result of this article is obtained by combining both theories in the following way.
Given an expansive matrix A, a well-spread set A and a window constructed following the
generalized painless method, we use the ¢-transform theory to produce an atomic decomposition
of Besov-Triebel-Lizorkin spaces using powers of the matrix A as dilations and a lattice I" as
set of translation nodes. The density of " is chosen so as to roughly match the density of A; this
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is possible thanks to the flexibility of the ¢-transform method. We then use Beurling’s results
to represent every measure supported on I" as a superimposition of delta measures supported on
A. This allows us to replace the lattice translations of the ¢-transform expansion by translations
along A. Finally, a careful perturbation argument yields a compactly supported window.

The ¢-transform theory provides us with a number of tools to tackle the technical problems.
We use the recent extension of these tools to the anisotropic setting (see Sections 3 and 6.1).

1.3. Organization

The article is organized as follows. Section 2 presents the generalized painless method. This
is known to produce wavelet frames for L2(R?). Sections 3 and 4 introduce the relevant classes
of functional spaces and collect several technical tools. In Section 5 we prove that windows
constructed following the generalized painless method provide atomic decompositions for Besov
and Triebel-Lizorkin spaces. As a consequence, these spaces admit an atomic decomposition
produced by arbitrary translations and dilations of a bandlimited function. In Section 6 we study
the case of compactly supported generators. Finally, Section 7 discusses possible generalizations
and extensions of the results.

2. The generalized painless method in L2

A matrix A € R?*4 is called expansive if all its eigenvalues p satisfy || > 1. For a general
matrix A € C4*?, we denote by A’ its transpose matrix whereas A* will denote its conjugate
transpose. A set A C R is called relatively separated if,

sup #(AN ([—1/2,1/21% + {x})) < 4o0.

xeR4

That is, a set is relatively separated if the number of points it has on any cube of side-length 1 is
bounded. Equivalently, a set A is relatively separated if it can be split into a finite union of sets
AL, ..., A" with each set A’ being separated, that is,

inf{|]A — A/l : A, A € A, A #£ 4} > 0.
The gap of a set A € R? is defined as,

p(A) = sup inf |x — A], 3)
reRd A€/
where | - | denotes the Euclidean norm. A set A is called relatively dense if p(A) < 4o0.
Equivalently, A is relatively dense if there exists R > 0 such that
R = | BrV),
re/

where, in general, B, (x) denotes the open Euclidean ball with center x and radius r. For x € R,
the translation operator T acts on a function f : RY — C by

T f(y) = f(y—x.

Also, for an invertible matrix A € Rdxd

we let D4 be the dilation operator normalized in LZ(R9),

Daf(x) :=|det A|"2 f(A™ " x). @)
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For w € RY, let e, (x) := €2™*¥_ where the multiplication in xw is the dot product. We use

the following normalization of the Fourier transform of a function f : RY — C,

fw) 1=/ F(X)ew(x)dx.
R4

Let us now present the construction and main result from [2].

e Let A € R?*? be an expansive matrix.
e Select a bounded set V C R4 such that 0 € V° and 3V has null-measure.
e Select a function h € C oo(R”l) such that

ing |h(x)] >0, Q:=(A"V)\V,

and
0 ¢ supp(h) € B,
where B, is a closed Euclidean ball of radius 0 < r < oo (not necessarily centered at the
origin).
e Select a relatively separated set A € R? such that
1
A) < —.
p(A) < ™
o Lety(x) = f]Rd h(w)e* X dy be the inverse Fourier transform of A.

The possible windows i generated by this method will be called generalized painless
wavelets. The class of all such windows will be denoted by C(A, A). When we refer to the
class C(A, A) we always assume that A and A satisfy the conditions above.

Remark 1. It is easy to verify that given any expansive matrix A and any well-spread set A,
the class C(A, A) is not empty. That is, we can use the construction above to produce a function
¥ € C(A, A). Indeed, since A is well-spread, p(A) < +0o0, so it suffices to let V be a sufficiently
small neighborhood of the origin.

The following result was proven in [2]. For examples of the construction see [2].

Theorem 1. Let € C(A, A). Then the affine system,
V={Dy Ly ljeZ re A} (5)

is a frame of L*>(R?). That is, it satisfies the following frame inequality for some constants
0<A<B < +o00,

AllFIE <Y DY KEDA T < BIfIG,  (f € LARY).

JEZ e

3. Anisotropic Besov-Triebel-Lizorkin spaces
3.1. Function and sequence spaces

We now introduce the class of anisotropic Besov—Triebel-Lizorkin spaces and recall some
basic facts about them [31,35,24,38,8,11,9,10]. For a comprehensive discussion of the literature
on anisotropic function spaces see [38]. We will mainly follow the approach in [8,11,9,10]



104 C. Cabrelli et al. / Advances in Mathematics 232 (2013) 98-120

that considers general expansive dilations and generalizes to the anisotropic setting some of
the fundamental results of Frazier and Jawerth [21,22] (see also [23,25]). Together with each
functional space we introduce a corresponding sequence space that will measure the size of the
coefficients in atomic decompositions.

Let A € R?*4 be an expansive matrix. Let ¢ € S(RY) be such that

supp(9) C ([—1/2, 17217\ {0D),

sup |g?)((A*)jw)| >0, foralw e R4 \ {0}.
JEZ

Let u be a measure on RY that is doubling with respect to the seminorm induced by A (see [8],
in particular the Lebesgue measure is adequate [8, Remark 2.1]). We are mainly interested in the
case of the Lebesgue measure, but the theory is available for more general measures. The reader
interested in this level of generality should keep in mind that all the estimates throughout the
article depend on the choice of the measure ;. When we want to emphasize that we let i be the
Lebesgue measure we say we are in the unweighted case.

Fora € Rand 0 < p, g < oo, the homogeneous, weighted, anisotropic Besov space Bz’q
= Bg’q (R4, A, ) is defined as the collection of all distributions modulo polynomials f € S’/P
such that

1/q
I £l g = (¥|dem|—”“+”2>qllf *DAjwll’ip(M)> < +00, (6)
JE

with the usual modifications when ¢ = oo. In [8] it is proved that Bz’q is a quasi-Banach space
(Banach for p, g > 1) and that it is independent of the particular choice of ¢ in the sense that
different choices yield the same space with equivalent norms.

The sequence space b,/ (Z%) = by, ? (Z4, A, 11) consists of all the sequences a € CZ*Z* guch
that

q 1/q

lallzze = [ D 1detA|=/F1/21 < 400, %)

JEZ

D lajlxcas oy i)
keZd

LP(w)

with the usual modifications when g = oo.

For o€ R,Q < g < +ooand 0 < p < 400, the anisotropic homogeneous Triebel-Lizorkin
space Fg’q = Fg’q (RY, A, W) is defined similarly, this time using the norm

1/q
||f||F;z.q = (Z | detA|—j(a+l/2)q|f * DA«f§0|q> , 8)

€7,
/€ LP(w)

with the usual modifications when ¢ = +o00. The norm of the associated sequence space on
7 x 74 is given by

1/q
lal g = (Z|detA|_j(a+l/2)q > |“jk|qX<A-f([o,11d+k))) : ®)

— ‘
je keZ Lo ()
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The definitions of the spaces F,,¥ and f,"? for p = 400 are more technical. Fora € R, 0 <
g < +oo, F{! is defined using the norm

1 5 .
Ifllpea = sup ( Z |det A|~/@+1/2q

se€Z,keZd M(Qs,k) Os.k j=—00

1/q
|f *DA./tp(X)I"du(x)) , (10)

where Qi = A ([0, 14 + k). When g = 400 this should be interpreted as,

11l peroo = sup | det A~/ V2 £ Dyl 00 . (1)
o0 jez

The corresponding space fjfoi 7Z%) of sequences on Z x Z? is defined using the norm,

1 S ,
la|l a == sup |det A|~/@F1/24
f+oo seZ.kezd H’(stk) Os.k j:X—:oo

1/q
lajxl?x0; (x)"dM(X)> . (12)

When g = +o0 this should be interpreted as,

la]l jo.s0 = sup |det A| /@12 g, ). (13)
+eo jez. kezd

For a discussion about these definitions see [11,9,10]. The inhomogeneous variants of all these
spaces are defined similarly (see [8,11,9]), but for simplicity we will only treat the homogeneous
case.

The class of spaces introduced above will be generically called the family of anisotropic
spaces of Besov—Triebel-Lizorkin type associated with a certain dilation A and a measure u. A
member of that family will be denoted by Ez’q while its corresponding sequence space will be
denoted by e%‘q. Each of the spaces Eg’q is continuously embedded into &’/P and is a quasi-
Banach space (see [8,11,9]).

3.2. Sequence spaces on more general index sets

Let A € R? be a relatively separated set. In order to measure the size of the coefficients
associated with the wavelet system in Section 2, we now define a space of sequences indexed
7 x A.

Let n := max;cz« #(A N ([0, ¥ + {k})). Since each of the cubes [0, 1)¢ + {k} contains at
most n points of A, it follows that we can split A into a disjoint union of n subsets

A=A'u-uan,
where each subset is parametrized by a set /¥ C Z¢

A ={rlkel’}, (1<s<n),
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and satisfies
Ay —kloo <1, (I<s=<nkel. (14)

Given a sequence of complex numbers ¢ = {¢;; | j € Z, > € A}, we define auxiliary sequences

¢!, ..., ¢ withindexes on Z x Z4 by

JO— Cjps ifkel®,
Jk 0, ifkeg I’
We then define the space el(;,’q (A) as the set of all sequences ¢ € C%*4 such that the correspond-

ing auxiliary sequences ¢!, ..., ¢® belong to €,?(Z¢). We endow the space €}, (A) with the
norm

1
lellgea gy = e lgwa oy + -+ + 16" g -

When the underlying set 4 is clear from the context we will write €7 instead of e}, (4). Note
that the definition depends on a specific decomposition of the set A. This is a bit unsatisfactory
but it will be sufficient for the purpose of this article since we will keep the set A fixed. The
question of the naturality of the definition is rather involved and beyond the scope of this article.
We refer the reader to [18,17] for some results in this direction—see also [19, Lemma 3.5].

3.3. Smooth atomic decomposition
Let ¥, T € S be such that,
supp(1), supp(?) < [—1/2,1/2] \ {0}.

Assume also that ¥, t satisfy the Calderon condition

Z V(AN w)T((A*)w) =1, forall w e R\ {0}.
JEZ
The work of Bownik and Ho [8,11,9,10], which extends to the anisotropic case the fundamental

results of Frazier and Jawerth [21,22], implies that the windows ¥, T provide the following
atomic decomposition of Besov and Triebel-Lizorkin spaces.

Theorem 2. Let 0 < p,q < +00,a € R, let E‘,x,’q be an anisotropic space of Besov—Triebel—
Lizorkin type and let eg’q be the corresponding sequence space. Then the analysis and synthesis
operators,

Cy Ep? — 1@, Cy(f) = (£ DuTi¥));
Se €12 > Ept. Si(0) =) ) cjuDaiTir,
k

J
are bounded. Moreover, S; o Cy, is the identity on E‘;’q.
Hence, each f € E‘;,’q admits the expansion,

f= Y (D4Tiy)Dy Tt

je€Z,keZd

Convergence takes place in the S’ /P topology and, for p,q < +00, also in the norm of E‘;’q.
(See [11, Lemmas 2.6 and 2.8] for a discussion about the precise meaning of the S'/P
convergence.)
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Remark 2. As a consequence of the atomic decomposition, the following norm equivalence
holds

I fllges 2 NCSF Dai T jallexs,  (f € E, ).

3.4. Molecules and general decompositions

Definition 1. Given L > 0, integers M, N > 0 and a relatively separated set 4 € R¢, a family
of functions,

U={y;,:RI>Cl|jeZre A}

is called a set of (L, M, N)-molecules if each function has continuous derivatives up to order M
and satisfies

107 (D49 ) ()] < (14 x —aD~",  forall |B] < M,

/ Py (x)dx =0, forall|B] < N.
R4

Remark 3. We stress that the functions in the definition of family of molecules do not need to
be dilated and translated versions of a single function. Throughout the article, it should not be
assumed, unless explicitly stated, that a function denoted by v/; ; is equal to D 4; T .

The definition presented here consists of a simplified version of the anisotropic molecules
introduced in [8,11,9]. This will be sufficient for our purpose. The notion of a set of molecules
generalizes the one of set of atoms in the sense that the analysis and synthesis maps (see
Theorem 2) can be extended to these families. The most important technical point is the
justification of the meaningfulness of the quantity (f, ;) for a molecule ¥; , and f € E%‘q,
since v ; may neither be in the Schwartz class nor have all its moments vanishing. This point is
thoroughly discussed in [8,11,9]; we refer the reader to these articles.

The following theorem, which is a minor modification of the corresponding results in the
above-mentioned articles, establishes the boundedness of analysis and synthesis for a general
molecular system, which is not necessarily a wavelet system and is indexed by a general relatively
separated set /.

Theorem 3. Let E?‘,’q be an anisotropic space of Besov-Triebel-Lizorkin type (0 < p,q <
+00,a € R), let A € RY be a relatively separated set and let e;’q(/l) be the corresponding
sequence space. Then, there exist constants L, M, N and C that only depend on A, p, q, a and
A such that for every set of (L, M, N)-molecules,

U={y;,:RI > C|jeZreA)
the following estimates hold.

Z Cia¥ja

Jik

< Cllcligza . forallc e e, (),

Ey?
I i) jalles < Clfllgee.  forall f € Ep?.
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Hence, the analysis and synthesis maps
Cy:Ep? — (1), Cu(f) = ({f, Wj,k))j’)t, 15)
Sy €M) > Ep?. Sp@ =) ciavja (16)
i

are bounded.

Remark 4. The series defining Sy (c) converge in the S’ /P topology and, for p, g < +00, also
in the norm of E‘;,’q.

Proof of Theorem 3. Let us consider first the case A = Z¢. In this case the result follows from
the results in Section 5 of [8,11,9]. The definition of molecule given there requires the decay
conditions

08Dy )0 < (14 patx =)™, forall |B] < M, 7)

with respect to a certain quasi-norm p4 associated with A and a certain constant L’. This quasi-
norm p4 satisfies

pax) < Ixl',

for ps(x) > 1 and some number ¢ > 0 that depends on A (see [7, Lemma 3.2] or [11, Lemma
2.2]). It follows that

A+ x = AD7E <0+ patx =)7L,

Hence, for any L’ > 0, the decay condition prescribed by Eq. (17) is satisfied if we take L > L.
We now show how to reduce the case of a general set A to the one of 4 = Z¢. With the
notation from Section 3.2, Eq. (14) implies that forall 1 <s <n

107 (D -] < (14 |x = D7F
S28( 4 x — kDT

Hence, if we define the families ¥* = {wj"k | j € Z,k € Z%} by sz.’k =Yju ifk e I*and 0
otherwise, it follows that each set ¥* is a constant multiple of a family of molecules. Therefore,
the corresponding analysis and synthesis maps are bounded. Hence,

n
Yoo S| D vk

jeZ, e ) s=1|jeZ kezd }
J E‘;‘I J E‘;q
n
Sl =
S e e (zay = Nellexa ay-
s=1
Similarly,

n
IS YD) jezaenllescay = 3 NCL V5D jezreza less
s=1

S lgga. O
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4. Balayage of Dirac measures

The balayage problem for the ball, consists in deciding if the restriction to the Euclidean ball
of the Fourier transform of an arbitrary measure can be represented as a linear combination of
imaginary exponentials along a given, quite arbitrary, discrete set. In [5], Beurling proved that this
is indeed possible if the gap of the discrete set is small enough (cf. Eq. (3)). In that same article,
he proved that if the measure to be represented is very concentrated, then the coefficients in the
corresponding non-harmonic trigonometric expansion of the restriction of its Fourier transform
have fast decay. This is essential to the present article.

We now quote a simplified version of one of the results in [5].

Theorem 4. Let r > 0 and let A € R? be such that p(A)r < 1/4. Then, there exist constants
C > 0,0 < ¢ < 1, depending only on d, A and r such that for every w € RY, there exists a
sequence {a,(w) | L € A} C C such that

ew(x) =Y ar(w)es(x), forallx € By (0),
re/

. 1/2
la; (w)] < Ce™clw=1"2,

Theorem 4 follows by applying the estimates obtained in Eqs. (24) and (25) from [5] to the
function 2(w) = c|w|1/2 and a suitably small constant ¢ > 0 (cf. Eq. (15) in [5]). The result
in [5] applies to r = 1. Theorem 4 follows after rescaling.

For convenience, we give the following straightforward variation of Theorem 4.

Corollary 1. Letr > 0, let A C RY be such that o(Mr < 1/4 and xg € RY. Then, there exist
constants C > 0, 0 < ¢ < 1, depending only on d, A and r such that for every w € R¢, there
exists a sequence { a, (w) | A € A} C C such that

e—w(®) =) ar(w)e(x), forallx € By(x),
reA

la; (w)| < Ce=clw=1"2,

Proof. This follows by translating and conjugating the equality in Theorem 4. That does
not affect the absolute value of the coefficients a,(w) and hence the decay condition is
preserved. [

5. The generalized painless method in Besov—Triebel-Lizorkin spaces

We can now show that the construction from Section 2 yields an atomic decomposition for
the whole class of anisotropic Besov—Triebel-Lizorkin spaces.

Theorem 5. Let v € C(A, A) (cf. Section 2) and let
U={y;)=DyLy|jeZ el

Then, there exists a family of band-limited functions,
U= {VjaljeLreA)

such that the following statements hold for each anisotropic space of Besov—Triebel-Lizorkin
type B9 with0 < p,q < oo and a € R.



110 C. Cabrelli et al. / Advances in Mathematics 232 (2013) 98-120

(a) The following analysis (coefficient) and synthesis (reconstruction) operators are bounded.
CyEy? — &), [ ((F0)0),emmen
~ R a.q "
Cy Ep7 — ey (A), fe((f ‘p/’ﬂ),/ez,xem
Sy Ie(;,'q(/l)—>Ea’q, c— ZC]")J//]',)”
Jor

o, o, ~
S e (D) > Byl e Y et

JoA
(b) Every f € E%’q admits the expansions,
F=> > APV
j€ZreA
=YY (VDT (18)
j€Zre

Convergence takes place in the S' /P topology and, for p,q < +0o, also in the norm of
| D
p

(c) The following norm equivalence holds

7R (TR0 I I [(VAZRY) (f € Ej).

o.q a.q
€p €p

Remark 5. For all (L, M, N), the family {1’/7 j,2}j, 1s a multiple of a set of molecules in the
sense of Definition 1. Hence, the operators in (a) are well-defined. In addition, the dual functions
have the form,

v ja = D4V,
for a certain family of functions { 1% | L e A}

Proof of Theorem 5. Let us adopt the notation from Section 2. It follows from the construction
of ¢ that ZjeZ [¥ ((A*)/w)|? & 1, for w # 0, and that supp(y/) B, (wp), for some wy € RY.
In addition, since 0 ¢ supp(@), we have that supp(lﬂ) C [—b/2,b/2]%\ {0}, for some b > 0.

We now produce a “dual window” 7 so that v, T satisfy the Calderdn condition. This follows
the now standard method of Frazier and Jawerth. Let 7 be such that

—1
2 (w) = b4 (w) (Z 9 ((A*)/ w>|2> . (w#0),
JEZL
so that,
supp(?) < By (wo) N [—b/2,b/21" \ {0},
DAY wE(AHTw) = b, (w #0).

JEZ

Itis easy tosee thatt € S (R9) (see for example [8, Lemma 3.6] or [11]). By rescaling the result
in Theorem 2, we see that the windows v, T provide the following lattice-based expansion for
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every anisotropic Besov—Triebel-Lizorkin space E}?,

f= Z <vaA.iT%w>DA.iT%T

Jj€Z.kezZd

= > (£DuTit)DuTiv. (f €E5, (19)

jEZ,keZd

with convergence in the S’/P topology. For j € Z and A € A, let ¥, := Dy, T;¢. For each
k € 74, Corollary 1 gives a sequence {a; & | A € A} € C such that

e_kp(w) = Zax,ke,x(w), for all w € B, (wo),
reA

lag x| S e~cIPR01?, (20)

Since }[Af and 7 are both supported on B, (wy), it follows that

Tey =) aruTiv. @1

re/
For j € Zand A € A, let
Vin= Y @ kDai Tt = Dyj v,
keZd

where,

Vo= ) anTer. (22)
kezd
Formally replacing Eq. (21) in Eq. (19) yields the expansions in Eq. (18). For example, the first
expansion in Eq. (18) follows (formally) from the corresponding expansion in Eq. (19) by the
following computation.

Z <f, DAJ’T%IP>DA;T%T = Z <f, Dy Zak,kT)»w>DAjT’;T

keZd keZd red

= Z Z ar i (s Dai Ty)D 4 T%T

keZd reA

=3 @xlf-Dy DDy Txt

reA kezd

= > (£ DuTayh) Y aniDy Tt

reA keZd

= Y (ADyTa¥)Dar Y @iy

red keZd
= D (LDAUTAY )i (23)
red

Let us now observe that these formal operations are indeed valid. We discuss the validity of
the first expansion in Eq. (18), the second one being analogous. Because of the fast decay of
the numbers in Eq. (20), the series in Eqgs. (21) and (22) converge absolutely in L2. Hence,
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the dilation operator D4, can be interchanged with both summations. We now discuss the
interchange of summation in k and A in Eq. (23). For A € 4,

([iDAiThr) = ([, Tpin Dpi ) = <f . m €A.m>-

Note that this computation is valid since D 4 vanishes in a neighborhood of the origin. Since

f - Dy, v is a compactly supported distribution, its distributional Fourier transform is a smooth
function with at most polynomial growth. This shows that,

HADL T S (A + AT S+ D,

for some constant s > 0 (where the implicit constants of course depend on j). This growth
estimate together with the fast decay of the coefficients a; x in Eq. (20) justifies the change of
the summation order.

We now prove that the analysis and synthesis operators in item (a) are bounded. Since ¢ € S
and 1/} vanishes near the origin, it is clear that for each (L, M, N) theset {y;, | j € Z,A € A}
is a constant multiple of a set of (L, M, N)-molecules. Hence, by Theorem 3, the operators
Cy, Sy are bounded on each of the relevant spaces.

The functions { ¥, | A € A} have all their moments vanishing. In addition, since t € S, for
every L > 0 and every multi-index g € N¢,

0P (@) S A+ xhF.
Using the estimate in Eq. (20), we see that the functions { 1% | A € A} satisfy
0P @0 < Y lan w19 (0)(x — k/b)|

kezd
<3 e W gy — kb
kezd
S U= a5 Y e WA (g a — kbt

keZd
S+ x=—ap7t.
From that estimate it follows that for each (L, M, N), the family
E={Jj,x =DA,-1’/;1 |jeZ,re A}

is also a multiple of a set of molecules (cf. Definition 1). Therefore, Theorem 3 implies that
the operators C, S are bounded on each of the relevant spaces. Finally, the claimed norm
equivalence follows from the fact that Cy and Cj have bounded right-inverses (namely, S5
and Sy). O

Corollary 2. Let A C R? be any well-spread set and let A € R?*? be an expansive matrix.
Then there exists a Schwartz class function  with Fourier transform supported on a compact
set not containing the origin, such that the irregular wavelet system,

{DaiThy | j € Z, % € A},

provides an atomic decomposition for the whole class of anisotropic Besov and Triebel-Lizorkin
spaces E‘[x,’q, 0 < p,q <00,a € R (in the precise sense of Theorem 5).

Proof. This follows immediately from Theorem 5 and Remark 1. [
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6. Compactly supported non-uniform wavelets

In this section we will combine Theorem 5 with a perturbation argument to show that any
expansive matrix and any well-spread set of translation nodes admit a compactly supported
wavelet frame. The perturbation method is quite standard (see for example [26,34,1,29,33]).
However, we are interested in obtaining results that hold uniformly for a whole range of
Triebel-Lizorkin spaces. This requires to deal with a number of technical matters. To this end,
we first introduce the relevant tools.

6.1. Some technical tools for Triebel-Lizorkin spaces

In order to carry out the construction in this section we will need a number of technical
tools concerning duality and interpolation in anisotropic Besov—Triebel-Lizorkin spaces. In the
Triebel-Lizorkin case these have been developed in [10]. The Besov case is technically much
simpler, but it does not seem to have been explicitly treated in the literature. Because of this,
from now on we restrict ourselves to the Triebel-Lizorkin case. Moreover, to avoid certain
technicalities with the pairing (-, -) we further restrict ourselves to the unweighted case u = dx.

The wavelet system that we will construct in Section 6 may not be a set of molecules (see
Definition 1). Hence, the meaning of the coefficient mapping needs to be clarified. In [10],

Bownik has extended the pairing (-, -) to Ea 4 x E d , (I < p,q < +00) and has moreover
characterized the dual space of E ! by means of it. Using this extension, the analysis map

f = Ca(f) = ((f,¢j1)jezren is well-defined onE 4 ifg; € E @d’ for all j, A. (Here,

p’ denotes the Holder conjugate of p, givenby 1/p+1/p' = 1.)
The following result is Theorem 6.2 in [10].

Theorem 6 (Bownik). Let E;) % E3\ "' be (anisotropic, homogeneous) Triebel-Lizorkin spaces
and let eao 40 e%ll I pe the correspondmg sequence spaces on 7 x Z4, with ag, 1 € R,0 <
Do, qo < —|—oo 0 < p1,q1 < +o00. Then for 0 < 0 < 1 we can identify the complex interpolation

spaces,

(e7 o
[e 0,490 epi QI]

[EO‘O 40 Eal ‘11]9 — E‘;‘)»‘I
where 1/p=(1—-6)/po+08/p1,1/qg =0 —0)/q0+0/q1, and ¢ = (1 — )axg + ;.

_ep ,

Remark 6. The statement [E},)*, E},\"!' ]y = E};? means that the underlying sets are equal and
the norms are equivalent. The constants in that norm equivalence may depend on «, p and g.

Corollary 3. If a linear operator T is bounded on the anisotropic Triebel-Lizorkin spaces E%’q
for all combinations of indexes o« = £, p = 1,00, g = 1, 0o, then T is bounded on E%’q for
the whole range —B <o < 8,1 < p,q < oc.

Remark 7. The reason why we exclude the cases p = 0o or ¢ = oo is that Theorem 6 requires
P0, 40 < O0.
Proof of Corollary 3. Let B, I be the sets
B={(p,q,0) |1 <p,g<o0,—B<a=<p, andTisboundedonEa’q}
L={/p,1/q,0) |1 = p,qg <00,(p,q,@) € B} S (0, 1] x (0, 1] x [-B, B].



114 C. Cabrelli et al. / Advances in Mathematics 232 (2013) 98-120

The conclusion will follow if we prove that 7 is actually (0, 1] x (0, 1] x [—8, B]. Since, by
Theorem 6, I is a convex set, it will be sufficient to show that I contains certain points.

Since (1, 1, £8), (400, +00, £8) € I, using Theorem 6 with pg = g9 = 1, ®p = £ and
p1 = q1 = 00, a1 = £ it follows that

{(I/p.1/p.£B) |1 = p <+oo}={(x,x,£f) [0 <x <1} C I (24)

Second, since (1, 1, £8), (+00, 1, £B) € B, using Theorem 6 with pg = qo = 1, a9 = £
and p; = 400, g1 = 1, a; = % it follows that

{A/p. 1/1,£p) |1 = p <+oo}={(x,1,£p) | 0<x =<1} I (25)

Similarly, since (1, 1, £8), (1, +o00, £8) € I, using Theorem 6 with pg = g9 = 1, 2p = £
and p; = 1, g1 = 400, @] = %8 it follows that

{1/, 1/q,£B) |1 =g <+oo}={(l,y,£B)|0<y=1}C I (26)
Since I is a convex set containing the lines in Egs. (24)—(26), it follows that
I =(0,1]x (0,11 x [-8, B,

as desired. [J
6.2. Construction of compactly supported windows

By Theorem 5, the wavelet frame constructed in Section 2 provides an atomic decomposition
for all the unweighted anisotropic Triebel-Lizorkin spaces. We will now use this together with a
perturbation argument to show that these spaces also admit an atomic decomposition generated
by a compactly supported window and the same set of translations and dilations.

Theorem 7. Let A C R? be any well-spread set and let A € R?*? be an expansive matrix. Let
N € Nand ag > 0. Then there exists a compactly supported function ¢ € C®(R?) such that

/ xPo(x)dx =0, forall |B] <N,
Rd

and a family of functions
& =1{¢jljeLred)

such that the following statements hold for the class of unweighted anisotropic Triebel-Lizorkin
spaces.

(a) & C E‘;’q,for all —ap <a <apand 1 < p,q < +o0.
(b) Every f € E‘;’q, (—ap < <ag, 1 < p,q < 00), admits the norm convergent expansion,

f= > (£DuT0)$;,

Jj€Z,re

= Y (£6,)D4Te.

JjEZLEN

(c) Further, for [ € E‘;,’q, (—op <a=<ap,1=<p,qg<o0)

1 lss ~ | (DT, | o ~ | (0 B50)

o,q o,qg *
€ €,
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Remark 8. The expression (f, 5 j,2) in (b) is well-defined because, by (a), 5 i € E;,a’q/ (cf.
Section 6.1).

Before proving Theorem 7 we need the following lemma.

Lemma 1. Let € C(A, A) and L, M, N > 0 be given. Then, for each ¢ > 0 there exists a C*
compactly-supported function @, with vanishing moments up to order N, such that the irregular
wavelet system,

{(é)DA.iTA(w_(P)‘j eZ,AeA},

is a set of (L, M, N) molecules. Consequently, the set (D »; T,(¥ — @)} ;5 is an e-multiple of a
set of molecules.

Proof. Let {tg : |B] < N} be a collection of smooth, compactly supported functions such that
fx”t,g(x)dx = 1,if y = B and 0 otherwise. For each R > 0, let ng : R — [0, 1] be
a C*, compactly supported function such that ng = 1 on the ball of radius R and such that
||8/3(r; Rl S 1, for all || < M (with constants independent of R, but possibly depending
on M).

Let us fix R > 0 and define

¢=9r=YnR— Y chTp,
IBI<N

where cg = fRd xPy (x)ngr(x)dx. By construction, ¢ is a C°°, compactly supported function

with vanishing moments up to order N. (The technique of adjusting the moments of ¥y by means
of the functions 74 is also used in [11, Lemma 5.4].) We will show that if R is large enough, then
@ = g satisfies the required conditions. To prove this, it suffices to show that there exists R > 0
such that

108 (¢ — pr)(X)| < e(1 + |x))"E, forall |B] < M and x € RY, (27)

Observe that the numbers |c§ | can be bounded, independently of R, by f |xPyr (x)|dx. This,
together with the facts that ¢ € S and the derivatives of ng are bounded independently of R,
implies that there exists a constant C > 0, independent of R, such that

108 (pr)(x)| < C(1 4 |x)~L~!,  forall |B] < M and x € RY.

(The function @g is compactly supported, but the important point is that the constant C is
independent of R.)

Consequently,

107 (¥ —or)()| < K(1+ x5!, forall || < M and x € RY, (28)

with a constant K > 0 independent of R.
Second, let us show that for |8| < M,

102 (¥ — o) lloo —> 0, when R —> +00. (29)
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For |x| < R, since ng = 1 near x,

0P —or) )] = Y [ef1107 (1)) ()]

lyI=N

< DI

lyI=N

-

lyI<N

S [ Iy ¥ ()ldy.
lyl<N Y IYI>R

For |x| > R, Eq. (28) gives,
108 (¥ — gr)(x)] < K(1 4+ R)~L71,

Hence

cf —/ yyw(y)dy‘
R4

188 (¥ — @r)llso §maxi Z f| Iy ¥ (»)|dy, (1+R)—L—1} o
yi>

lyl<n I

as R — +o00. Hence, the assertion in Eq. (29) is proved.
Using again the estimate in Eq. (28), we obtain that for |8| < N,

197 = R (] = 197 (W — @)l KA (1 k) E
Hence, it suffices to choose a value of R > 0 such that
0P (¥ — pr)llb" T KL <,
and the claim follows. O
Let us now prove Theorem 7.

Proof of Theorem 7. Let A be an expansive matrix and 4 € R? a well- spread set. Let ¢ €
C(A, A) (see Remark 1). Set again ¥ = {Dy;Th¢ | j € Z, 2 € A} and let VU = {1//],;\ |
Jj € Z,) € A} be the dual system from Theorem 5. Let us further denote by C§ and S§, the
corresponding analysis and synthesis operators.

Let us consider the set of parameters X := {(p,q,a) : p =1, +00; g = 1, 400; o = £ap}.
For each (p, ¢, @) € X, Theorem 3 gives certain constants Lg, My, Ng, Cp. Since X is finite, we
can choose them to be the same for all (p, ¢, @) € X. Furthermore, we choose Ny to be greater
than the parameter N from the statement of the theorem.

For every ¢ > 0, Lemma 1 yields a smooth, compactly supported function ¢® with vanishing
moments up to order N, such that

{1/eDgi T — @) | j € Z, 2 € A},
is a set of (Lo, Mo, No) molecules. Hence, for each ¢ > 0,
€ — Cwllges_, ze = eCo,
ISe: — Swllgrs gze < eCo,
where (p, ¢, «) € X and
Pf = {cpj.,)\ =DyiThe | jeZ e A}
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According to Theorem 5, SyCy = SzFCy = I on each E‘Ix,’q (here I denotes the identity
operator). Therefore,

I = SGCoellgeagze = IS (Cw — Coe)llga g
< ellSllezs g,

and

I = SgeCpllgnaea = I(Sw — Sge)Cipllgna_gua

SelCy ”e‘;"’—>E‘I",‘q'

Set ¢ := ¢ with ¢ < 1 so that the operators S3C¢ and S¢Cy are invertible on E‘;’q for all
(p.q,a) € X. Since the operators (S5 Cg¢), (S¢C5), (S@Cgp)_1 and (S@C;f,)_l are bounded
on Ei’q for all (p,q,a) € X, Corollary 3 implies that they are bounded on E%’q for all
-0 < o < ap,1 < p,qg < +oo. For this range of parameters, a density argument shows
that the relations

(S5Ce) " (S5Ca) = (S5Ca)(S7Ca) ™' = Igaa,
(S6C3) ' (SeC3) = (SoC3)(SaCy) ' = Ian,

remain valid.

Let us consider the operators T := (S Cop)~! S and T = CW(SQsCW)’1

For j € Z, ) € A, let §; ; be the sequence taking the value 1 at (j, ) and O everywhere else.
Let ¢] x =T Slnce T is bounded from epq to E 4 forall —ag < a < ap, 1 < p.q <
~+o00, it follows that ¢ bja € E ! for that range of parameters Hence, in order to prove (a) it
remains to show that ¢; € E » 7 when p or g are +-00. We already know that ¢ i € | D D . for
all combinations p = 1, +00,q = 1, 400, ¢ = £, because T is also bounded from e,,q to
E‘;’q forall (p,q,a) € X.

The inclusion

E;ao'q ﬂEaO'q < Ea’q, (oo < a < ),
is valid for the whole range 1 < p, ¢ < +o0 and follows eas1ly from the definitions (without
resorting to Theorem 6). Hence, it suffices to show that ¢> i € E} » 7 when = 4ag and p or g

are 4+00. For p = 400, this follows from the inclusion Eiao ! C Eécoao q, forall 1 < g < +o0,

which is proved in [10, Corollary 3.7]. Finally, the case ¢ = o0 follows from the inclusion
E]iolo,+00 mEigg,+OO g Eiao,-i-oo’ (1 S p S +OO),

which in turn follows from [10, Theorem 1.3] (and also from [10, Theorem 1.1]).

Let us now establish the expansions of statement (b). To this end, let —op < o < g, 1 <
p,q < +o0. Since p q < o0, the set of sequences {J;, | j € Z, A € A} forms an unconditional
Schauder basis of e, 9. (This follows for example from the fact that the space e p 29 is solid and
the class of finitely supported sequences is dense.) Hence, for f € E,

Co(f) =Y (f )8}
JsA

with convergence in the norm of e%’q. Applying T in the last equation yields the expansion

F=Y (¢
Jih

with convergence in the norm of E;’q.
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Since S¢T'(f) = f,forall f € E% Y, in order to establish the dual expansion, it suffices to
prove the (formal) adjunction formula,

(T'(f),8j2) = (£. T (),

forall f € EZ’q. This is easily seen to hold for f € Eg‘z, where the pairing is an inner product
and the operators S, S are the adjoints of Cy, C g respectively. For f € E‘;’q the conclusion
follows by a density argument because of the continuity of the pairing (-, -) : Eg’q X E;,a’q/ — C.

Finally, since TCsf = f for all f € E‘;,’q, it follows that ||f||E¢;,q ~ ||C¢(f)||e¢;-q, for
—ap <o < ag,1 < p,q < +o00. Hence one of the statements in (c) is proved. For the other
one, note that we have just shown that 7/ = C7y. Therefore, SeC3(f) = SeT'(f) = f, and

Cy : Ey? — e is bounded for —ag < o < ap, 1 < p,q < 4o00. Hence, the conclusion
follows. [

As a consequence, we obtain the following corollary which motivated most of our work.

Corollary 4. Let A € R? be any well-spread set and let A € R4*? be an expansive matrix.
Then, given N > 0, there exists a compactly supported, infinitely differentiable function ¢, with
vanishing moments up to order N such that the irregular wavelet system {D,;T)@ | j € Z, A €
A} provides an atomic decomposition for all the spaces LP(R?), 1 < p < +oo (in the precise
sense of Theorem 7).

Proof. The corollary follows immediately from Theorem 7 and the fact that for 1 < p < +o0,

the unweighted, homogeneous, A-anisotropic Triebel-Lizorkin space F 19’2 coincides with
LP(RY) (see [7,9]). O

Remark 9. Even if one only wanted to prove this corollary, the proof would still go through the
anisotropic Triebel-Lizorkin spaces F 10 2 and F&z.

Remark 10. The restriction to the unweighted case ;& = dx is not essential since all the relevant
tools are available in the weighted case [8—10]. The required treatment of the paring (-, -) is
however more technical.

Remark 11 (The case p < 1 or g < 1). The perturbation argument from Theorem 7 is based on
the fact that on a Banach space, an operator that is sufficiently close to the identity is invertible.
This is still true in the quasi-Banach case. However, how close to the identity an operator
needs to be in order to be invertible depends on the constant of the (quasi) triangle inequality.
Thus, the decomposition of Theorem 7 can be extended to include any individual anisotropic
Triebel-Lizorkin space Eg’q with p < 1 or g < 1. In contrast to Theorem 5, the whole range
0 < p, g < +oo cannot be covered with the same window ¢.

In connection to this, it should be pointed out that the parameters in the pairing E‘;,’q X

E;,a’ql — C need to be adjusted for p < 1 or g < 1 (see [10, Theorem 4.8]). Also, for p < 1,

the right spaces in Corollary 4 are not L” (R?) but the anisotropic Hardy spaces considered in [7]
which do depend on the anisotropy.

7. Possible generalization and extensions

We now comment on possible extensions of Theorems 5 and 7. The proofs in this article can
be readily adapted to cover the use of a different set of translation nodes at each scale,
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{1det(A)| /YA - =0 | jeZae A},

as long as certain qualities of the sets A ; are kept uniform: the maximum number of points of 4 ;
in any cube of side-length 1 and the gap p(4;).
Another natural question is the possibility of using a different matrix A; at each scale

{1det(A I~y (AT =) | j e Z, e 4;).

This is in principle possible if the family {A; : j € Z} has an expanding behavior comparable
to the one of the group generated by an expanding matrix {A/ : j € Z}. Indeed, the existence of
L?-frames adapted to general families of dilations {A j i J € Z} has been already studied [39,2].
Second, the proofs in this article rely on the notion of time-scale molecule which is sufficiently
general so as to cover more general families of dilations (cf. Section 3.4).

The most important pending direction to explore is the computability of the dual frame
produced in the proof of Theorem 5. It seems that it should be possible to adapt Beurling’s
methods to produce a computable approximate dual frame for the time-scale systems generated
by the generalized painless method, but at this moment this is not clear from the proof of
Theorem 5. Similarly, a quantitative estimate on the size of the support of the window produced
in Theorem 7 would be of practical relevance.
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