Conferencia

Estamos trabajando para incorporar este artículo al repositorio

Abstract:

The finite element method is one of the most frequently used techniques to approximate the solution of partial differential equations. It consists in approximating the unknown solution by functions which are polynomials on each element of a given partition of the domain, made of triangles or quadrilaterals (or their generalizations to higher dimensions). A fundamental problem is to estimate the error between the exact solution u and its computable finite element approximation. In many situations this error can be bounded in terms of the best approximation of u by functions in the finite element space of piecewise polynomial functions. A natural way to estimate this best approximation is by means of the Lagrange interpolation or other similar procedures. Many works have considered the problem of interpolation error estimates. The classical error analysis for interpolations is based on the so-called regularity assumption, which excludes elements with different sizes in each direction (called anisotropic). The goal of this paper is to present a different approach which has been developed by many authors and can be applied to obtain error estimates for several interpolations under more general hypotheses. An important case in which anisotropic elements arise naturally is in the approximation of convection-diffusion problems which present boundary layers. We present some applications to these problems. Finally we consider the finite element approximation of the Stokes equations and present some results for non-conforming methods. © 2006 European Mathematical Society.

Registro:

Documento: Conferencia
Título:Error estimates for anisotropic finite elements and applications
Autor:Durán, R.G.
Ciudad:Madrid
Filiación:Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:Anisotropic elements; Convection-diffusion; Finite elements; Mixed methods; Stokes equations; Anisotropic elements; Convection diffusion; Finite Element; Mixed method; Stokes equations; Anisotropy; Diffusion in liquids; Error analysis; Finite element method; Heat convection; Interpolation; Partial differential equations; Polynomials; Estimation
Año:2006
Volumen:3
Página de inicio:1181
Página de fin:1200
Título revista:25th International Congress of Mathematicians, ICM 2006
Título revista abreviado:Int. Congr. Math., ICM
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_NIS06866_v3_n_p1181_Duran

Referencias:

  • Acosta, G., Lagrange and average interpolation over 3D anisotropic elements (2001) J. Comp. Appl. Math., 135, pp. 91-109
  • Acosta, G., Durán, R.G., The maximum angle condition for mixed and non conforming elements: Application to the Stokes equations (2000) SIAM J. Numer. Anal., 37, pp. 18-36
  • Acosta, G., Durán, R.G., Error estimates for Q1 isoparametric elements satisfying a weak angle condition (2000) SIAM J. Numer. Anal., 38, pp. 1073-1088
  • Apel, T., Anisotropic finite elements: Local estimates and applications (1999) Adv. Numer.Math., , Teubner, Stuttgart
  • Apel, T., Interpolation of non-smooth functions on anisotropic finite element meshes (1999) Math. Model. Numer. Anal., 33, pp. 1149-1185
  • Apel, T., Dobrowolski, M., Anisotropic interpolation with applications to the finite element method (1992) Computing, 47, pp. 277-293
  • Apel, T., Nicaise, S., Schoeberl, J., Crouzeix-Raviart type finite elements on anisotropic meshes (2001) Numer. Math., 89, pp. 193-223
  • Arnold, D.N., Brezzi, F., Mixed and nonconforming finite element methods implementation, postprocessing and error estimates (1985) RAIRO, Modél. Math. Anal. Numér., 19, pp. 7-32
  • Babuška, I., Courant element: Before and after (1994) Finite Element Methods, pp. 37-51. , Lecture Notes Pure Appl. Math. 164, Dekker, New York
  • Babuška, I., Aziz, A.K., On the angle condition in the finite element method (1976) SIAM J. Numer. Anal., 13, pp. 214-226
  • Brenner, S.C., Scott, L.R., (1994) The Mathematical Theory of Finite Element Methods, , Texts Appl. Math. 15, Springer-Verlag, New York
  • Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers (1974) RAIRO Sér. Rouge, 8, pp. 129-151
  • Brezzi, F., Fortin, M., (1991) Mixed and Hybrid Finite Element Methods, , Springer Ser. Comput. Math. 15, Springer-Verlag, New York
  • Ciarlet, P.G., (1978) The Finite Element Method for Elliptic Problems, , Stud. Math. Appl. 4, North Holland, Amsterdam
  • Crouzeix, M., Raviart, P.A., Conforming and non-conforming finite element methods for solving the stationary Stokes equations (1973) RAIRO Anal. Numér., 7, pp. 33-76
  • Durán, R.G., Error estimates for 3-d narrow finite elements (1999) Math. Comp., 68, pp. 187-199
  • Durán, R.G., Lombardi, A.L., Error estimates on anisotropic Q1 elements for functions in weighted Sobolev spaces (2005) Math. Comp., 74, pp. 1679-1706
  • Durán, R.G., Lombardi, A.L., Finite element approximation of convection diffusion problems using graded meshes Appl. Numer. Math., , to appear
  • Fortin, M., An analysis of the convergence of mixed finite element methods (1977) RAIRO Anal. Numér., 11, pp. 341-354
  • Girault, V., Raviart, P.A., (1986) Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, , Springer Ser. Comput. Math. 5, Springer-Verlag, Berlin
  • Jamet, P., Estimations d'erreur pour des éléments finis droits presque dégénérés (1976) RAIRO Anal. Numér., 10, pp. 46-71
  • Krízek, M., On the maximum angle condition for linear tetrahedral elements (1992) SIAM J. Numer. Anal., 29, pp. 513-520
  • Marini, L.D., An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method (1985) SIAM J. Numer. Anal., 22, pp. 493-496
  • Raviart, P.A., Thomas, J.M., A mixed finite element method for second order elliptic problems (1977) Mathematical Aspects of the Finite Element Method, pp. 292-315. , (ed. by I. Galligani and E. Magenes), Lecture Notes in Math. 606, Springer-Verlag, Berlin
  • Roos, H.G., Stynes, M., Tobiska, L., (1996) Numerical Methods for Singularly Perturbed Differential Equations, , Springer Ser. Comput. Math. 24, Springer-Verlag, Berlin
  • Shenk, N.A., Uniform error estimates for certain narrow Lagrange finite elements (1994) Math. Comp., 63, pp. 105-119A4 - Ministerio de Educacion y Ciencia; Minist. Asuntos Exteriores Coop. - Agencia Espanola Coop. Int.; Ministerio de Cultura - Biblioteca Nacional; Minist. Cult. - Dir. Gen. Comun. Coop. Cult.; Minist. Cult. - Soc. Estatal Conmemoraciones Cult.

Citas:

---------- APA ----------
(2006) . Error estimates for anisotropic finite elements and applications. 25th International Congress of Mathematicians, ICM 2006, 3, 1181-1200.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_NIS06866_v3_n_p1181_Duran [ ]
---------- CHICAGO ----------
Durán, R.G. "Error estimates for anisotropic finite elements and applications" . 25th International Congress of Mathematicians, ICM 2006 3 (2006) : 1181-1200.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_NIS06866_v3_n_p1181_Duran [ ]
---------- MLA ----------
Durán, R.G. "Error estimates for anisotropic finite elements and applications" . 25th International Congress of Mathematicians, ICM 2006, vol. 3, 2006, pp. 1181-1200.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_NIS06866_v3_n_p1181_Duran [ ]
---------- VANCOUVER ----------
Durán, R.G. Error estimates for anisotropic finite elements and applications. Int. Congr. Math., ICM. 2006;3:1181-1200.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_NIS06866_v3_n_p1181_Duran [ ]