Parte de libro

Callegari, G.; Calvo, A. "Capillary phenomena" (2009) Functional Properties of Bio-Inspired Surfaces: Characterization and Technological Applications:181-232
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

Interfacial and capillary phenomena are present in multiple biological processes. Some examples are duck's feathers impermeability, spiders’ sticky traps, and Lotus leaf's effect. The last subject is considered in a separate chapter due to its important technological applications. The basis to understand all those processes is the focus of the present chapter, divided into three subsections. The first one addresses the fundamentals of interfacial tension and wetting conditions as thermodynamical concepts. In the second, capillarity effects under dynamical conditions are considered. The third section is devoted to liquid films, their stability, and the spontaneous retraction in simple geometries. © 2009 by World Scientific Publishing Co. Pte. Ltd. All rights reserved.

Registro:

Documento: Parte de libro
Título:Capillary phenomena
Autor:Callegari, G.; Calvo, A.
Filiación:TRI/Princeton, 601 Prospect Ave, Princeton, NJ 08536, United States
Grupo de Medios Porosos, Departamento de Física, Universidad de Buenos Aires, Paseo Colón 850, Buenos Aires, 1063, Argentina
Palabras clave:Biological process; Capillary phenomena; Lotus leaf; Simple geometries; Technological applications; Thermodynamical; Wetting conditions; Liquid films
Año:2009
Página de inicio:181
Página de fin:232
DOI: http://dx.doi.org/10.1142/9789812837028_0008
Título revista:Functional Properties of Bio-Inspired Surfaces: Characterization and Technological Applications
Título revista abreviado:Functional Properties of Bio-Inspired Surfaces: Characterization and Technological Applications
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97898128_v_n_p181_Callegari

Referencias:

  • Eisner, T., Aneshansley, D., Defense by foot adhesion in a beetle (2000) (Hemisphaerota cyanea). PNAS, 97, pp. 6568-6573
  • Jin, H., Kaplan, D., Mechanism of silk processing in insects and spiders (2003) Nature, 424, pp. 1057-1061
  • Eberhard, W., Barrantes, G., Ju-Lin, W., Tie them uptight:Wrappingby Philoponella vicina spiders breaks, compresses and sometimes kills their prey (2006) Naturwissenschaften, 93, pp. 251-254
  • Gorb, S., Smooth attachment devices in insects: Functional morphology and biomechanics (2007) Adv Insect Physiol, 34, pp. 81-115
  • Bush, J., Hu, D., Prakash, M., The integument of water-walking arthropods: Form and function (2007) Adv Insect Physiol, 34, pp. 117-192
  • Autumn, K., Sitti, M., Liang, Y., Peattie, A., Hansen, W., Sponberg, S., Kenny, T., Full, R., Evidence for van derWaals adhesion in gecko setae (2002) PNAS, 99, pp. 12252-12256
  • Rijke, A., The water repellency of water-bird feathers (1987) Auk, 104, pp. 140-142
  • Elowson, A., Spread-wing postures and the water repellency of feathers-a test of Rijke hypothesis (1984) Auk, 101, pp. 371-383
  • Bakken, G., Banta, M., Higginbotham, C., Lynott, A., It’s just ducky to be clean: The water repellency and water penetration resistance of swimming mallard Anas platyrhyn-chos ducklings (2006) J Avian Biol, 37, pp. 561-571
  • Edwards, J., The biochemistry of cell-adhesion (1983) Prog Surf Sci, 13, pp. 125-196
  • Bongrand, P., Capo, C., Depieds, R., Physics of cell-adhesion (1982) Prog Surf Sci, 12, pp. 217-285
  • Thevenot, P., Hu, W., Tang, L., Surface chemistry influences implant biocompatibility (2008) Curr Top Med Chem, 8, pp. 270-280
  • Dubin, R., Callegari, G., Kohn, J., Neimark, A., Carbonnanotubefibersarecompatible with mammalian cells and neurons (2008) IEEE Trans Nanobiosci, 7, pp. 11-14
  • London, F., The general theory of molecular forces (1937) Trans Faraday Soc, 33, pp. 8-26
  • Jones, L., On the determination of molecular fields. II. From the equation of a state of gas (1924) Proc Royal Society of London Series A-Mathematical and Physical Sciences, 106, pp. 463-477
  • Keesom, W., On Waal’s cohesion forces (1921) Physikalische Zeitschrift, 22, pp. 129-141
  • Debye, P., ; Debye, P., Molecular forces and their electric explanation (1921) Physikalische Zeitschrift, 22, pp. 302-308
  • Good, R., Girifalco, L., A theory for estimation of surface and interfacial energies. 3. Estimation of surface energies of solids from contact angle data (1960) J Phys Chem, 64, pp. 561-565
  • Churaev, N., Sobolev, V., Wetting of low-energy surfaces (2007) Adv Colloid Interface Sci, 134-135, pp. 15-23
  • Derjaguin, B., Churaev, N., Structural component of disjoining pressure (1974) J Colloid Interface Sci, 49, pp. 249-255
  • De Gennes, P., Brochard, F., Quere, D., (2004) Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, , Springer, New York
  • Young, T., An essay on the cohesion of fluids (1805) Phil Trans R Soc Lond, 95, pp. 65-87
  • Gibbs, J., CollectedWorks (1928) Thermodynamics, p. 1. , Longmans, New York
  • Amirfazli, A., Kwok, D., Gaydos, J., Neumann, A., Linetension measurements through drop size dependence of contact angle (1998) J Colloid Interface Sci, 205, pp. 1-11
  • Tate, T., On the magnitude of a drop of liquid formed under different circumstances (1864) Phil Mag, 27, pp. 176-180
  • Harkins, W., Brown, F., The determination of surface tension (Free surface energy), and the weight of falling drops-The surface tension of water and benzene by the capillary height method (1919) Jamer Chem Soc, 41, pp. 499-524
  • Strenge, K., Concerningpapertabulatedcorrectionfactorsfordrop-weight-volume determination of surface and interface tensions by Lando, Jl and Oakley, Ht (1969) J Colloid Interface Sci, 29, p. 732
  • Zhang, Z., Mori, Y., Formulation of the Harkins-Brown correction factor for drop-volume description (1993) Indeng Chem Res, 32, pp. 2950-2952
  • Gunde, R., Hartland, S., Mader, R., Sphere tensiometry: A new approach to simultaneous and independent determination ofsurface tension and contact angle (1995) J ofColloid Interface Sci, 176, pp. 17-30
  • Rotenberg, Y., Boruvka, L., Neumann, A., The shape of nonaxisymmetric drops on inclined planar surfaces (1984) J of Colloid Interface Sci, 102, pp. 424-434
  • Lecomte Du Nouy, P., ; Wilhelmy, L., Ueber die Abhangigkeit der Capillaritats-Constanten des Alkohols von Substanz und Gestalt des benetzten festen Korpers (1863) Ann Phys, 195 (6), pp. 177-217
  • Tabor, D., Winterton, R., Direct measurement of normal and retarded van der Waals forces (1969) Proc R Soc London Series A-Mathematical and Physical Sciences, 312, pp. 425-450
  • Israelachvili, J., Tabor, D., Measurement of van derWaals dispersion forces in range 1.4 to 130Nm (1972) Nature-Phys Sci, 236, p. 106
  • Mangipudi, V., Tirrell, M., Pocius, A., (1995) Direct Measurement of Molecular Level Adhesion between Poly(Ethylene Terephthalate) and Polyethylene Films: Determination Ofsurface and Interfacial Energies, p. 1254. , VSP, Utrecht, The Netherlands
  • Fowkes, F., Attractive forces at interfaces (1964) Industrial and Engineering Chem, 56, pp. 40-52
  • Fowkes, F., Padday, J., Uffindel, N., Comments on calculation of cohesive and adhesive energies by Padday, Jf and Uffindell, Nd (1968) J Phys Chem, 72, p. 3700
  • Berthelot, D., Sur le Melange des Gaz (1898) Crhebd Acad Sci, 126, pp. 1703-1706
  • Van Oss, C., Good, R., Chaudhury, M., Additive and nonadditive surface-tension components and the interpretation of contact angles (1988) Langmuir, 4, pp. 884-891
  • Kwok, D., The usefulness of the Lifshitz-van der Waals/acid-base approach for surface tension components and interfacial tensions (1999) Colloids Surfa-Physicochem Engasp, 156, pp. 191-200
  • Ward, C., Neumann, A., On the surface thermodynamics of a two-component liquid-vapor-ideal solid system (1974) J Colloid Interface Sci, 49, pp. 286-290
  • Morrison, I.D., Does the phase rule for capillary systems really justify an equation of state for interfacial-tensions? (1991) Langmuir, 7 (8), pp. 1833-1836
  • Della Volpe, C., Maniglio, D., Brugnara, M., Siboni, S., Morra, M., The solid surface free energy calculation-I (2004) Defense of the Multicomponent approach. J Colloid Interface Sci, 271, pp. 434-453
  • Berg, J., (1993) Wettability, p. 75. , J.C Berg, Marcel Deker, New York
  • Lee, L., Adhesion and surface-hydrogen-bond components for polymers and biomaterials (1998) J Adhesion, 67, pp. 1-18
  • Wenzel, R., Resistance of solid surfaces to wetting by water (1936) Ind Eng Chem, 28, pp. 988-994
  • Cassie, A., Baxter, S., Wettability of porous surfaces (1944) Trans Faraday Soc, 40, pp. 0546-0550
  • Lafuma, A., Quere, D., Superhydrophobic states (2003) Nat Mater, 2, pp. 457-460
  • Johnson, R., Jr., Dettre, R., Wettability and contact angles (1969) Surface and Colloid Science, 2, pp. 85-153. , E Matejivic, John Wiley and Sons, New York
  • Neumann, A., Good, R., Thermodynamics of contact angles, I. Heterogeneous solid surfaces (1972) J Colloid and Interface Sci, 38, pp. 341-358
  • Schwartz, L., Garoff, S., Contact angle hysteresis and the shape of the three phase line (1985) J Colloid Interface Sci, 106, pp. 422-437
  • Marmur, A., Contact angle hysteresis on heterogeneous smooth surfaces (1994) JColloid Interface Sci, 168, pp. 40-46
  • Huh, C., Mason, S., Steady movement of a liquid meniscus in a capillary tube (1977) Jfluidmech, 81, pp. 401-419
  • Johnson, R., Dettre, R., Contact angle hysteresis II. Contact angle measurements on rough surfaces (1964) Adv Chem Ser, 43, pp. 112-135
  • Stokes, J., Higgins, M., Kushnick, A., Bhattacharya, S., Robbins, M., Harmonic-generation as a probe of dissipation at a moving contact line (1990) Phys Rev Lett, 65, pp. 1885-1888
  • Andrieu, C., Sykes, C., Brochard, F., Dynamics of fast dewetting on model solid substrates (1996) Jadhesion, 58, pp. 15-24
  • Decker, E., Garoff, S., Using vibrational noise to probe energy barriers producing contact angle hysteresis (1996) Langmuir, 12, pp. 2100-2110
  • Meiron, T., Marmur, A., Saguy, I., Contact angle measurement on rough surfaces (2004) J Colloid Interface Sci, 274, pp. 637-644
  • Marmur, A., Wetting on real surfaces (2000) J Imaging Sci Technol, 44, pp. 406-409
  • Wolansky, G., Marmur, A., Apparent contact angles on rough surfaces: The Wenzel equation revisited (1999) Colloids Surf. A: Physicochem Engasp, 156, pp. 381-388
  • Hartmann, P., Collet, A., Viguier, M., Acrylic copolymers with perfluoroalkylated biphenyl side groups, correlation structure-surface properties (2006) Macromolecules, 39, pp. 6975-6982
  • Lam, C., Wu, R., Hair, M., Neumann, A., Study on advancing and receding contact angles: Liquid disporting as a cause of contact angle hysteresis (2002) Adv Colloid Interface Sci, 96, pp. 169-191
  • Chen, Y., Helm, C., Israelachvili, J., Molecular mechanisms associatedwith adhesion and contact angle hysteresis of monolayer surfaces (1991) Jphys Chem, 95, pp. 10736-10747
  • Yasuda, T., Miyama, M., Yasuda, H., Effect of water immersion on surface configuration of an ethylene-vinyl alcohol copolymer (1994) Langmuir, 10, pp. 583-585
  • Rangwalla, H., Schwab, A., Yurdumakan, B., Yablon, D., Yeganeh, M., Dhinojwala, A., Molecular structure of an alkyl-side-chain polymer-water interface: Origins of contact angle hysteresis (2004) Langmuir, 20, pp. 8625-8633
  • Shanahan, M., Equilibrium of liquid-drops on thin plates-plate rigidity and stability considerations (1987) J Adhesion, 20, pp. 261-274
  • Princen, H., Capillary phenomena in assemblies of parallel cylinders. 2. Capillary rise in systems with more than 2 cylinders (1969) J Colloid Interface Sci, 30, pp. 359-371
  • Minor, F., Schwartz, A., Wulkov, E., Buckion, L., Migration of liquids in textile assemblies (1959) Text Res J, 29, pp. 931-939
  • Dyba, R., Miller, B., Evaluation ofwettability from capillary rise between filaments (1969) Textres J, 39, pp. 962-970
  • Kissa, E., Capillary sorption in fibrous assemblies (1981) J Colloid Interface Sci, 83, pp. 265-272
  • Lucas, R., Ueber das Zeitgesetz des kapillaren Aufstiegs von Flussigkeiten (1918) Kolloid Zeitschrif, 23, pp. 15-22
  • Bell, J., Cameron, F., The flowofliquids through capillary spaces (1906) J Phys Chem, 10, pp. 658-674
  • Washburn, E., The dynamics of capillary flow (1921) Phys Rev, 17, pp. 273-283
  • Bosanquet, C., Ontheflowofliquidsintocapillarytubes (1923) Philosmag, 45, pp. 525-531
  • Barraza, H., Kunapuli, S., O’Rear, E., Advancing contact angles of Newtonian fluids during “high” velocity, transient, capillary-driven flow in a parallel plate geometry (2002) J Phys Chem B, 106, pp. 4979-4987
  • Quere, D., Inertial capillarity (1997) Europhys Lett, 39, pp. 533-538
  • Zhmud, B., Tiberg, F., Hallstensson, K., Dynamics of capillary rise (2000) J Colloid Interface Sci, 228, pp. 263-269
  • Dreyer, M., Delgado, A., Rath, H., Capillary rise of liquid between parallel plates under microgravity (1994) J Colloid Interface Sci, 163, pp. 158-168
  • Duarte, A., Strier, D., Zanette, D., The rise of liquid in a capillary tube revisited: A hydrodynamical approach (1996) Am J Phys, 64, pp. 413-418
  • Kornev, K., Callegari, G., Amosova, O., Neimark, A., ; Kornev, K., Callegari, G., Neimark, A., Capillary microfluidics for viscoelastic fluids (2004) ICTAM21, , W Gutkowski & TA Kowalewski, Warsaw, Poland
  • Szekely, J., Neumann, A., Chuang, Y., The rate of capillary penetration and the applicability of the Washburn equation (1971) J Colloid Interface Sci, 35, pp. 273-278
  • Levine, S., Lowndes, J., Watson, E., Neale, G., Theory of capillary rise of a liquid in a vertical cylindrical tube and in a parallel-plate channel-Washburn equation modified to account for the meniscus with slippage at the contact line (1980) J Colloid Interface Sci, 73, pp. 136-151
  • Siegel, R., Transient capillary rise in reduced and zero gravity fields (1961) Japplmech, 28 (2), pp. 165-170
  • Stange, M., Dreyer, M., Rath, J., Capillary driven flow in circular cylindrical tubes (2003) Physfluids, 15, pp. 2587-2601
  • Jeje, A., Rates of spontaneous movement of water in capillary tubes (1979) J Colloid Interface Sci, 69, pp. 420-429
  • Berezkin, V., Churaev, N., Changes in contact-angle during the process of capillary rise (1982) Colloid J USSR, 44, pp. 376-382
  • Ichikawa, N., Satoda, Y., Interface dynamics of capillary-flow in a tube under negligible gravity condition (1994) J Colloid Interface Sci, 162, pp. 350-355
  • Hamraoui, A., Thuresson, K., Nylander, T., Yaminsky, V., Canadynamiccontactangle be understood in terms of a friction coefficient? (2000) J Colloid Interface Sci, 226, pp. 199-204
  • Siebold, A., Nardin, M., Schultz, J., Walliser, A., Oppliger, M., Effect of dynamic contact angle on capillary rise phenomena (2000) Colloids Surfa-Physicochem Eng Asp, 161, pp. 81-87
  • Bazilevsky, A., Kornev, K., Rozhkov, A., Neimark, A., Spontaneous absorption of viscous and viscoelastic fluids by capillaries and porous substrates (2003) J Colloid Interface Sci, 262, pp. 16-24
  • Weissenberg, K., A continuum theory of rheological phenomena (1947) Nature, 159, pp. 310-311
  • Ablett, R., An investigation of the angle of contact between paraffin wax and water (1923) Philos Mag, 46, pp. 244-256
  • Tanner, L., Spreading of silicone oil drops on horizontal surfaces (1979) J Phys D-Appl Phys, 12, pp. 1473-1485
  • Lelah, M., Marmur, A., Spreading kinetics of drops on glass (1981) J Colloid Interface Sci, 82, pp. 518-525
  • Cazabat, A., How does a droplet spread (1987) Contemp Phys, 28, pp. 347-364
  • Chen, J., (1988) Experimentsonaspreadingdropanditscontact-angleonasolid.JColloid Interface Sci, 122, pp. 60-72
  • Hoffman, R., Study of advancing interface. 1. Interface shape in liquid-gas systems (1975) J Colloid Interface Sci, 50, pp. 228-241
  • Calvo, A., Paterson, A., Chertcoff, R., Rosen, M., Hulin, J., Dynamic capillary pressure variations in diphasic flows through glass capillaries (1991) J Colloid Interface Sci, 141, pp. 384-394
  • Fermigier, M., Jenffer, P., An experimental investigation of the dynamic contact angle in liquid-liquid systems (1991) J Colloid Interface Sci, 146, p. 226
  • Callegari, G., Calvo, A., Hulin, J., Contact line motion: Hydrodynamical or molecular process? (2006) Contact Angle, Wettability and Adhesion, 4. , KL Mittal, VSP, Leiden
  • Inverarity, G., Dynamic wetting of glass fibre and polymer fibre (1969) Brit Polym J, 1, pp. 245-251
  • Schwartz, A., Tejada, S., Studies of dynamic contact angles on solids (1972) J Colloid Interface Sci, 38, pp. 359-375
  • Burley, R., Kennedy, B., Study of dynamicwetting behavior of polyester tapes (1976) Brit Polym J, 8, pp. 140-143
  • Burley, R., Kennedy, B., Experimental-study of air entrainment at a solid-liquid-gas interface (1976) Chem Eng Sci, 31, pp. 901-911
  • Strom, G., Fredriksson, M., Stenius, P., Radoev, B., Kinetics of steady-state wetting (1990) J Colloid Interface Sci, 134, pp. 107-116
  • Blake, T., Clarke, A., Ruschak, K., Hydrodynamic assist of dynamic wetting (1994) Aiche J, 40, pp. 229-242
  • Blake, T., Haynes, J., Kinetics of liquid/liquid displacement (1969) J Colloid Interface Sci, 30, pp. 421-423
  • Blake, T., Bracke, M., Shikhmurzaev, Y., Experimental evidence of nonlocal hydrodynamic influence on the dynamic contact angle (1999) Phys Fluids, 11, pp. 1995-2007
  • Elliott, G., Riddiford, A., Dynamic contact angles. 1. Effect of impressed motion (1967) J Colloid Interface Sci, 23, pp. 389-398
  • Dussan, E., Davis, S., Motion of a fluid-fluid interface along a solid-surface (1974) J Fluid Mech, 65, pp. 71-95
  • Chen, Q., Rame, E., Garoff, S., Experimental studies on the parametrization of liquid spreading and dynamic contact angles (1996) Colloids Surfa-Physicochem Eng Asp, 116, pp. 115-124
  • Shen, C., Ruth, D., Experimental and numerical investigations of the interface profile close to a moving contact line (1998) Phys Fluids, 10, pp. 789-799
  • Huh, C., Scriven, L., Hydrodynamic model of steady movement of a solid/liquid/fluid contact line (1971) J Colloid Interface Sci, 35, pp. 85-101
  • Greenspan, H., Motion ofasmall viscous droplet that wetsa surface (1978) Jfluidmech, 84, pp. 125-143
  • Voinov, O., Asymptotics of the viscous-liquid free-surface at the creeping motion and the dependence of wetting angle on the velocity (1978) Doklady Akademii Nauk Sssr, 243, pp. 1422-1425
  • Hocking, L., Rivers, A., The spreading of a drop by capillary action (1982) J Fluid Mech, 121, pp. 425-442
  • Cox, R., The dynamics of the spreading of liquids on a solid-surface. 1. Viscous-flow (1986) J Fluidmech, 168, pp. 169-194
  • Blake, T., The physics of moving wetting lines (2006) J Colloid Interface Sci, 299, pp. 1-13
  • Degennes, P., Wetting-statics and dynamics (1985) Rev Modern Phys, 57, pp. 827-863
  • Cazabat, A., Wetting-from macroscopic to microscopic scale (1992) Adv Colloid Interface Sci, 42, pp. 65-87
  • Petrov, P., Petrov, J., A combined molecular-hydrodynamic approach to wetting kinetics (1992) Langmuir, 8, pp. 1762-1767
  • Hocking, L., Moving fluid interface. 2. Removalofforcesingularityby aslip-flow (1977) J Fluid Mech, 79, pp. 209-229
  • Ngan, C., Dussan, E., On the dynamics ofliquid spreading on solid-surfaces (1989) JFluid Mech, 209, pp. 191-226
  • Petrov, J., Sedev, R., Petrov, P., Effect of geometry on steady wetting kinetics and critical velocity of film entrainment (1992) Adv Colloid Interface Sci, 38, pp. 229-269
  • Dussan, E., Rame, E., Garoff, S., On identifying the appropriate boundary-conditions at a moving contact line-an experimental investigation (1991) J Fluid Mech, 230, pp. 97-116
  • Marsh, J., Garoff, S., Dussan, V., Dynamic contact angles and the fluid-fluid interface shape near a moving contact line (1993) Phys Review Lett, 70, pp. 2778-2781
  • Chen, Q., Rame, E., Garoff, S., The breakdown of asymptotic hydrodynamic models of liquid spreading at increasing capillary number (1995) Phys Fluids, 7, pp. 2631-2639
  • Lowndes, J., The numerical-simulation of the steady movement of a fluid meniscus in a capillary-tube (1980) J Fluid Mech, 101, pp. 631-646
  • Neogi, P., Miller, C., Spreadingkinetics ofa dropon aroughsolid-surface (1983) JColloid Interface Sci, 92, pp. 338-349
  • Tilton, J., The steady motion of an interface between 2 viscous-liquids in a capillary-tube (1988) Chemengsci, 43, pp. 1371-1384
  • Dussan, E., Spreading of liquids on solid-surfaces-static and dynamic contact lines (1979) Annu Rev Fluid Mech, 11, pp. 371-400
  • Ruckenstein, E., Dunn, C., Slip velocity during wetting ofsolids (1977) J ColloidInterface Sci, 59, pp. 135-138
  • Tolstoi, D.M., Molecular theory for slippage of liquids over solid surfaces (1952) Dokl AcadNaukSSSR, 85, pp. 1089-1092. , (, Russian)
  • Ruckenstein, E., The moving contact line of a droplet on a smooth solid (1995) JColloid Interface Sci, 170, pp. 284-286
  • Koplik, J., Banavar, J., Willemsen, J., Molecular-dynamics of Poiseuille flow and moving contact lines (1988) Phy Rev Lett, 60, pp. 1282-1285
  • Thompson, P., Robbins, M., Simulations of contact-line motion-slip and the dynamic contact-angle (1989) Phys Rev Lett, 63, pp. 766-769
  • Dussan, V., The moving contact line: The slip boundary condition (1976) J Fluid Mech, 77, pp. 665-684
  • Petrov, J., Petrov, P., Forced advancement and retraction of polar liquids on a low-energy surface (1992) Colloids Surf, 64, pp. 143-149
  • Hayes, R., Ralston, J., Forced liquid movement on low-energy surfaces (1993) J Colloid Interface Sci, 159, pp. 429-438
  • Blake, T., De Coninck, J., The influence of solid-liquid interactions on dynamic wetting (2002) Adv Colloid Interface Sci, 96, pp. 21-36
  • Cazabat, A., Gerdes, S., Valignat, M., Villette, S., Dynamics of wetting: From theory to experiment (1997) Interface Sci, 5, pp. 129-139
  • Shikhmurzaev, Y., The moving contact line on a smooth solid-surface (1993) Int J Multiphase Flow
  • Shikhmurzaev, Y., Dynamic contact angles and flow in vicinity of moving contact line (1996) Aiche J, 42, pp. 601-612
  • Shikhmurzaev, Y., Moving contact lines in liquid/liquid/solid systems (1997) J Fluid Mech, 334, pp. 211-249
  • Shikhmurzaev, Y., Spreading of drops on solid surfaces in a quasi-static regime (1997) Phys Fluids, 9, pp. 266-275
  • Rame, E., Garoff, S., Willson, K., Characterizing the microscopic physics near moving contact lines using dynamic contact angle data (2004) Phys Rev E Stat Nonlin Soft Matter Phys, 70. , 031608
  • Blake, T., Dynamic contact angles and wetting kinetics (1993) Wettability, pp. 251-302. , JC Berg, Marcel Dekker, New York
  • Vega, M., Gouttiere, C., Seveno, D., Blake, T., Voue, M., De Coninck, J., Clarke, A., Experimental investigation of the link between static and dynamic wetting by forced wetting of nylon filament (2007) Langmuir, 23, pp. 10628-10634
  • Ruschak, K., Coating flows (1985) Annu Rev Fluid Mech, 17, pp. 65-89
  • Blake, T., Ruschak, K., Maximum speed of wetting (1979) Nature, 282, pp. 489-491
  • Callegari, G., Demojado en geometrias simples (2003) Phd Thesis, Departamento de Fisica, , Buenos Aires University, Buenos Aires
  • Fairbrother, F., Stubb, J., Studies in electro-endosmosis. PartVI. The ‘bubble-tube’ method of measurement (1935) J Chem Soc, 1, pp. 527-529
  • Bretherton, F., The motion of long bubbles in tubes (1961) J Fluid Mech, 10, pp. 166-188
  • Taylor, G., Deposition of a viscous fluid on the wall of a tube (1961) J Fluid Mech, 10, pp. 161-165
  • Chen, J., ; Cachile, M., Chertcoff, R., Calvo, A., Rosen, M., Hulin, J., Cazabat, A., Residual film dynamics in glass capillaries (1996) J Colloid Interface Sci, 182, pp. 483-491
  • Callegari, G., Calvo, A., Hulin, J., Dewetting processes in a cylindrical geometry (2005) Eur Phys J E, 16, pp. 283-290
  • Landau, L., Levich, B., Dragging of a liquid by a moving plate (1942) Acta Physicochim (USSR), 17, pp. 42-54
  • Park, C., Homsy, G., 2-phase displacement in Hele Shaw cells-theory (1984) J Fluid Mech, 139, pp. 291-308
  • Teletzke, G., Davis, H., Scriven, L., Wetting hydrodynamics (1988) Revue De Physique Appliquee, 23, pp. 989-1007
  • Reinelt, D., Saffman, P., The penetrationof a finger into aviscous fluid ina channel and tube (1985) Siamjsci Stat Comput, 6, pp. 542-561
  • Deryck, A., Quere, D., Inertial coating of a fibre (1996) Jfluidmech, 311, pp. 219-237
  • Quere, D., Fluid coating on a fiber (1999) Annu Rev Fluidmech, 31, pp. 347-384
  • Rebouillat, S., Steffenino, B., Salvador, B., Hydrodynamics of high speed fibre impregnation: The fluid layer formation from the meniscus region (2002) Chem Eng Sci, 57, pp. 3953-3966
  • Reiter, G., Dewetting of thin polymer films (1992) Phys Rev Lett, 68, pp. 75-78
  • Reiter, G., Unstable thin polymer films: Rupture and dewetting processes (1993) Langmuir, 9, pp. 1344-1351
  • Callegari, G., Calvo, A., Hulin, J., Experimental results of dewetting in the viscogravitational regime (2002) Colloids Surf A-Physicochem Eng Asp, 206, pp. 167-177
  • Redon, C., Brochard-Wyart, F., Rondelez, F., Dynamics of dewetting (1991) Phys Rev Lett, 66, pp. 715-718
  • Andrieu, C., Sykes, C., Brochard-Wyart, F., Average spreading parameter on heterogeneous surfaces (1994) Langmuir, 10, pp. 2077-2080
  • Debregeas, G., Martin, P., Brochard-Wyart, F., Viscous bursting of suspended films (1995) Phys Rev Lett, 75, pp. 3886-3889
  • Callegari, G., Calvo, A., Hulin, J., Brochard-Wyart, F., Dewetting versus Rayleigh instability inside capillaries (2002) Langmuir, 18, pp. 4795-4798
  • Herminghaus, S., Seeman, R., Jacobs, K., ; Plateau, J., (1873) Statique Experimental Et Theorique Des Liquides Soumis Aux Seules forces moleculaires, , Gauthiers-Villars, Paris
  • Rayleigh, J., (1899) Scientifique Papers, , Cambridge University Press, Cambridge
  • Ackley, S., Soul of the healer, Spider web (2002) The Permanent J, 6 (4), p. 64
  • Goren, S., The instabilityof an annular thread of fluid (1962) Jfluidmech, 12, pp. 309-319
  • Goldsmith, H., Mason, S., Flow of suspensions through tubes. 2. Single large bubbles (1963) J Colloid Sci, 18, pp. 237-261
  • Hammond, P., Nonlinear adjustment of a thin annular film of viscous fluid surrounding a thread of another within a circular cylinder pip (1983) J Fluidmech, 137, pp. 363-384
  • Gauglitz, P., Radke, C., An extended evolution equation for liquid film breakup in cylindrical capillaries (1988) Chem Engsci, 43, pp. 1457-1465
  • Aul, R., Olbrich, W., Stability of a thin annular film in pressure-driven low-Reynolds-number flow through a capillary (1990) J Fluidmech, 215, pp. 585-599
  • Sánchez, D., Chertcoff, R., Calvo, A., Callegari, G., Dewetting in fibers (2007) Poster #31 in Pan-American Advanced Studies Institute on Interfacial Fluid Dynamics: From Theory to Applications, pp. 6-17. , Mar del Plata, Argentina, August, 2007

Citas:

---------- APA ----------
Callegari, G. & Calvo, A. (2009) . Capillary phenomena. Functional Properties of Bio-Inspired Surfaces: Characterization and Technological Applications, 181-232.
http://dx.doi.org/10.1142/9789812837028_0008
---------- CHICAGO ----------
Callegari, G., Calvo, A. "Capillary phenomena" . Functional Properties of Bio-Inspired Surfaces: Characterization and Technological Applications (2009) : 181-232.
http://dx.doi.org/10.1142/9789812837028_0008
---------- MLA ----------
Callegari, G., Calvo, A. "Capillary phenomena" . Functional Properties of Bio-Inspired Surfaces: Characterization and Technological Applications, 2009, pp. 181-232.
http://dx.doi.org/10.1142/9789812837028_0008
---------- VANCOUVER ----------
Callegari, G., Calvo, A. Capillary phenomena. Functional Properties of Bio-Inspired Surfaces: Characterization and Technological Applications. 2009:181-232.
http://dx.doi.org/10.1142/9789812837028_0008