Parte de libro

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

The p53 tumor suppressor is a transcription factor that integrates signals from numerous stress-activated signaling pathways and regulates the expression of specific target genes. p53 activation triggers a variety of cellular responses that ensure tumor suppression, including cell cycle arrest, apoptosis and senescence. In addition, p53 tumor suppressive activity also involves the maintenance of cellular homeostasis through the regulation of metabolic pathways and the protection of stemness. Mutation of p53 protein or inactivation of the p53 pathway is the most frequent alteration found in human cancer. Loss of p53 function leads to tumorigenesis and is associated with poor prognosis and therapy resistance in cancer patients. Moreover, mutant p53 often exhibits gain of function activities that contribute to the tumoral phenotype. Over 30 years of basic research on p53 structure and function have placed p53 at the center of cancer investigation. Numerous cellular and mouse models have demonstrated that restoration of p53 function may stop tumor progression or even promote tumor regression. Now, these observations lead to the development of multiple anti-cancer therapeutic strategies that rely on activation of wild-type p53 or reactivation of mutant p53, as well as other p53-based approaches. Rational drug design and functional screenings have allowed for the identification of small molecule compounds, some of which are currently being tested in clinical trials. © Springer Science+Business Media Dordrecht 2015.

Registro:

Documento: Parte de libro
Título:p53 at the crossroads between stress response signaling and tumorigenesis: From molecular mechanisms to therapeutic opportunities
Autor:Giono, L.E.; Ladelfa, M.F.; Monte, M.
Filiación:Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología y Biología Molecular, IFIBYNE, UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Ciudad de Buenos Aires, C1428EHA, Argentina
Laboratorio de Biología Celular y Molecular, Departamento de Química Biológica, IQUIBICEN, UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Intendente Güiraldes 2160, Ciudad de Buenos Aires, C1428EHA, Argentina
Palabras clave:Apoptosis; Cancer; Cell cycle; Cell signaling; DNA damage; Metabolism; Mutation; Oncogene; p53; Senescence; Therapy; Tumor suppressor
Año:2015
Página de inicio:51
Página de fin:73
DOI: http://dx.doi.org/10.1007/978-94-017-9421-3_4
Título revista:Stress Response Pathways in Cancer: From Molecular Targets to Novel Therapeutics
Título revista abreviado:Stress Response Pathways in Cancer: From Molecular Targets to Novel Therapeutics
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97894017_v_n_p51_Giono

Referencias:

  • Akdemir, K.C., Jain, A.K., Allton, K., Aronow, B., Xu, X., Cooney, A.J., Li, W., Barton, M.C., Genome-wide profiling reveals stimulus-specific functions of p53 during differentiation and DNA damage of human embryonic stem cells (2014) Nucleic Acids Res, 42 (1), pp. 205-223
  • Aladjem, M.I., Spike, B.T., Rodewald, L.W., Hope, T.J., Klemm, M., Jaenisch, R., Wahl, G.M., ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage (1998) Curr Biol, 8 (3), pp. 145-155
  • Ali, S.H., Decaprio, J.A., Cellular transformation by SV40 large T antigen: Interaction with host proteins (2001) Semin Cancer Biol, 11 (1), pp. 15-23
  • Aloni-Grinstein, R., Shetzer, Y., Kaufman, T., Rotter, V., P53: The barrier to cancer stem cell formation (2014) FEBS Lett, 588, pp. 2580-2589
  • Asher, G., Tsvetkov, P., Kahana, C., Shaul, Y., A mechanism of ubiquitin-independent protea-somal degradation of the tumor suppressors p53 and p73 (2005) Genes Dev, 19 (3), pp. 316-321
  • Bensaad, K., Tsuruta, A., Selak, M.A., Vidal, M.N., Nakano, K., Bartrons, R., Gottlieb, E., Vousden, K.H., TIGAR, a p53-inducible regulator of glycolysis and apoptosis (2006) Cell, 126 (1), pp. 107-120
  • Berk, A.J., Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus (2005) Oncogene, 24 (52), pp. 7673-7685
  • Bischof, O., Kirsh, O., Pearson, M., Itahana, K., Pelicci, P.G., Dejean, A., Deconstructing PML-induced premature senescence (2002) Embo J, 21 (13), pp. 3358-3369
  • Bocchetta, M., Eliasz, S., De Marco, M.A., Rudzinski, J., Zhang, L., Carbone, M., The SV40 large T antigen-p53 complexes bind and activate the insulin-like growth factor-I promoter stimulating cell growth (2008) Cancer Res, 68 (4), pp. 1022-1029
  • Boeckler, F.M., Joerger, A.C., Jaggi, G., Rutherford, T.J., Veprintsev, D.B., Fersht, A.R., Targeted rescue of a destabilized mutant of p53 by an in silico screened drug (2008) Proc Natl Acad Sci U S A, 105 (30), pp. 10360-10365
  • Bourdon, J.C., Fernandes, K., Murray-Zmijewski, F., Liu, G., Diot, A., Xirodimas, D.P., Saville, M.K., Lane, D.P., P53 isoforms can regulate p53 transcriptional activity (2005) Genes Dev, 19 (18), pp. 2122-2137
  • Brosh, R., Rotter, V., When mutants gain new powers: News from the mutant p53 field (2009) Nat Rev Cancer, 9 (10), pp. 701-713
  • Budanov, A.V., Karin, M., P53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling (2008) Cell, 134 (3), pp. 451-460
  • Budanov, A.V., Sablina, A.A., Feinstein, E., Koonin, E.V., Chumakov, P.M., Regeneration of perox-iredoxins by p53-regulated sestrins, homologs of bacterial AhpD (2004) Science, 304 (5670), pp. 596-600
  • Cano, C.E., Gommeaux, J., Pietri, S., Culcasi, M., Garcia, S., Seux, M., Barelier, S., Carrier, A., Tumor protein 53-induced nuclear protein 1 is a major mediator of p53 antioxidant function (2009) Cancer Res, 69 (1), pp. 219-226
  • Chene, P., Inhibition of the p53-hdm2 interaction with low molecular weight compounds (2004) Cell Cycle, 3 (4), pp. 460-461
  • Comel, A., Sorrentino, G., Capaci, V., Del Sal, G., The cytoplasmic side of p53's oncosuppressive activities (2014) FEBS Lett, 588, pp. 2600-2609
  • Crighton, D., Wilkinson, S., O'prey, J., Syed, N., Smith, P., Harrison, P.R., Gasco, M., Ryan, K.M., DRAM, a p53-induced modulator of autophagy, is critical for apoptosis (2006) Cell, 126 (1), pp. 121-134
  • Culotta, E., Koshland, D.E., Jr., P53 sweeps through cancer research (1993) Science, 262 (5142), pp. 1958-1961
  • Dai, C., Gu, W., P53 post-translational modification: Deregulated in tumorigenesis (2010) Trends Mol Med, 16 (11), pp. 528-536
  • De Stanchina, E., Querido, E., Narita, M., Davuluri, R.V., Pandolfi, P.P., Ferbeyre, G., Lowe, S.W., PML is a direct p53 target that modulates p53 effector functions (2004) Mol Cell, 13 (4), pp. 523-535
  • Dittmer, D., Pati, S., Zambetti, G., Chu, S., Teresky, A.K., Moore, M., Finlay, C., Levine, A.J., Gain of function mutations in p53 (1993) Nat Genet, 4 (1), pp. 42-46
  • Dohner, H., Fischer, K., Bentz, M., Hansen, K., Benner, A., Cabot, G., Diehl, D., Stilgenbauer, S., P53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias (1995) Blood, 85 (6), pp. 1580-1589
  • Donehower, L.A., Harvey, M., Slagle, B.L., Mc Arthur, M.J., Montgomery, C.A., Jr., Butel, J.S., Bradley, A., Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours (1992) Nature, 356 (6366), pp. 215-221
  • Doyle, J.M., Gao, J., Wang, J., Yang, M., Potts, P.R., MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases (2010) Mol Cell, 39 (6), pp. 963-974
  • Drane, P., Bravard, A., Bouvard, V., May, E., Reciprocal down-regulation of p53 and SOD2 gene expression-implication in p53 mediated apoptosis (2001) Oncogene, 20 (4), pp. 430-439
  • El-Deiry, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M., Lin, D., Vogelstein, B., WAF1, a potential mediator of p53 tumor suppression (1993) Cell, 75 (4), pp. 817-825
  • Essmann, F., Schulze-Osthoff, K., Translational approaches targeting the p53 pathway for anticancer therapy (2012) Br J Pharmacol, 165 (2), pp. 328-344
  • Feng, Z., Zhang, H., Levine, A.J., Jin, S., The coordinate regulation of the p53 and mTOR pathways in cells (2005) Proc Natl Acad Sci U S A, 102 (23), pp. 8204-8209
  • Feng, Z., Hu, W., De Stanchina, E., Teresky, A.K., Jin, S., Lowe, S., Levine, A.J., The regulation of AMPK beta1, TSC2, and PTEN expression by p53: Stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways (2007) Cancer Res, 67 (7), pp. 3043-3053
  • Freed-Pastor, W.A., Prives, C., Mutant p53: One name, many proteins (2012) Genes Dev, 26 (12), pp. 1268-1286
  • Frezza, C., Martins, C.P., From tumor prevention to therapy: Empowering p53 to fight back (2012) Drug Resist Updat, 15 (5-6), pp. 258-267
  • Green, D.R., Kroemer, G., Cytoplasmic functions of the tumour suppressor p53 (2009) Nature, 458 (7242), pp. 1127-1130
  • Grochola, L.F., Zeron-Medina, J., Meriaux, S., Bond, G.L., Single-nucleotide polymorphisms in the p53 signaling pathway (2010) Cold Spring Harb Perspect Biol 2(5), 2 (5), pp. a001032
  • Gu, B., Zhu, W.G., Surf the post-translational modification network of p53 regulation (2012) Int J Biol Sci, 8 (5), pp. 672-684
  • Halaby, M.J., Yang, D.Q., P53 translational control: A new facet of p53 regulation and its implication for tumorigenesis and cancer therapeutics (2007) Gene, 395 (1-2), pp. 1-7
  • Hamada, M., Fujiwara, T., Hizuta, A., Gochi, A., Naomoto, Y., Takakura, N., Takahashi, K., Orita, K., The p53 gene is a potent determinant of chemosensitivity and radiosensitivity in gastric and colorectal cancers (1996) J Cancer Res Clin Oncol, 122 (6), pp. 360-365
  • Han, M.K., Song, E.K., Guo, Y., Ou, X., Mantel, C., Broxmeyer, H.E., SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization (2008) Cell Stem Cell, 2 (3), pp. 241-251
  • Hanel, W., Marchenko, N., Xu, S., Yu, S.X., Weng, W., Moll, U., Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis (2013) Cell Death Differ, 20 (7), pp. 898-909
  • Hermeking, H., Eick, D., Mediation of c-Myc-induced apoptosis by p53 (1994) Science, 265 (5181), pp. 2091-2093
  • Hoe, K.K., Verma, C.S., Lane, D.P., Drugging the p53 pathway: Understanding the route to clinical efficacy (2014) Nat Rev Drug Discov, 13 (3), pp. 217-236
  • Honda, R., Yasuda, H., Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53 (1999) Embo J, 18 (1), pp. 22-27
  • Huibregtse, J.M., Scheffner, M., Howley, P.M., Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53 (1993) Mol Cell Biol, 13 (2), pp. 775-784
  • Jacks, T., Remington, L., Williams, B.O., Schmitt, E.M., Halachmi, S., Bronson, R.T., Weinberg, R.A., Tumor spectrum analysis in p53-mutant mice (1994) Curr Biol, 4 (1), pp. 1-7
  • Kandoth, C., Schultz, N., Cherniack, A.D., Akbani, R., Liu, Y., Shen, H., Robertson, A.G., Levine, D.A., Integrated genomic characterization of endometrial carcinoma (2013) Nature, 497 (7447), pp. 67-73
  • Kawauchi, K., Araki, K., Tobiume, K., Tanaka, N., P53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation (2008) Nat Cell Biol, 10 (5), pp. 611-618
  • Kenzelmann Broz, D., Attardi, L.D., In vivo analysis of p53 tumor suppressor function using genetically engineered mouse models (2010) Carcinogenesis, 31 (8), pp. 1311-1318
  • Kim, S.H., Dass, C.R., P53-targeted cancer pharmacotherapy: Move towards small molecule compounds (2011) J Pharm Pharmacol, 63 (5), pp. 603-610
  • Kondoh, H., Lleonart, M.E., Gil, J., Wang, J., Degan, P., Peters, G., Martinez, D., Beach, D., Glycolytic enzymes can modulate cellular life span (2005) Cancer Res, 65 (1), pp. 177-185
  • Kruse, J.P., Gu, W., Modes of p53 regulation (2009) Cell, 137 (4), pp. 609-622
  • Ladelfa, M.F., Peche, L.Y., Toledo, M.F., Laiseca, J.E., Schneider, C., Monte, M., Tumor-specific MAGE proteins as regulators of p53 function (2011) Cancer Lett, 325 (1), pp. 11-17
  • Ladelfa, M.F., Toledo, M.F., Laiseca, J.E., Monte, M., Interaction of p53 with tumor suppressive and oncogenic signaling pathways to control cellular reactive oxygen species production (2012) Antioxid Redox Signal, 15 (6), pp. 1749-1761
  • Lane, D.P., Cancer. P53, guardian of the genome (1992) Nature, 358 (6381), pp. 15-16
  • Lane, D.P., Crawford, L.V., T antigen is bound to a host protein in SV40-transformed cells (1979) Nature, 278 (5701), pp. 261-263
  • Lane, D.P., Cheok, C.F., Lain, S., P53-based cancer therapy (2010) Cold Spring Harb Perspect Biol, 2 (9), pp. a001222
  • Lang, G.A., Iwakuma, T., Suh, Y.A., Liu, G., Rao, V.A., Parant, J.M., Valentin-Vega, Y.A., Lozano, G., Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome (2004) Cell, 119 (6), pp. 861-872
  • Laronga, C., Yang, H.Y., Neal, C., Lee, M.H., Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression (2000) J Biol Chem, 275 (30), pp. 23106-23112
  • Levine, A.J., P53, the cellular gatekeeper for growth and division (1997) Cell, 88 (3), pp. 323-331
  • Lee, S.W., Seong, M.W., Jeon, Y.J., Chung, C.H., Ubiquitin E3 ligases controlling p53 stability (2012) Anim Cells Syst, 16 (3), pp. 173-182
  • Li, H., Fan, X., Kovi, R.C., Jo, Y., Moquin, B., Konz, R., Stoicov, C., Houghton, J., Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: A model of age-related tumorigenesis in mice (2007) Cancer Res, 67 (22), pp. 10889-10898
  • Lin, T., Chao, C., Saito, S., Mazur, S.J., Murphy, M.E., Appella, E., Xu, Y., P53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression (2005) Nat Cell Biol, 7 (2), pp. 165-171
  • Liu, X., Yue, P., Khuri, F.R., Sun, S.Y., P53 upregulates death receptor 4 expression through an intronic p53 binding site (2004) Cancer Res, 64 (15), pp. 5078-5083
  • Llanos, S., Clark, P.A., Rowe, J., Peters, G., Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus (2001) Nat Cell Biol, 3 (5), pp. 445-452
  • Lu, W., Pochampally, R., Chen, L., Traidej, M., Wang, Y., Chen, J., Nuclear exclusion of p53 in a subset of tumors requires MDM2 function (2000) Oncogene, 19 (2), pp. 232-240
  • Luo, J., Nikolaev, A.Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., Gu, W., Negative control of p53 by Sir2alpha promotes cell survival under stress (2001) Cell, 107 (2), pp. 137-148
  • Machado-Silva, A., Perrier, S., Bourdon, J.C., P53 family members in cancer diagnosis and treatment (2010) Semin Cancer Biol, 20 (1), pp. 57-62
  • Maddocks, O.D., Vousden, K.H., Metabolic regulation by p53 (2011) J Mol Med (Berl), 89 (3), pp. 237-245
  • Malkin, D., Li-fraumeni syndrome (2011) Genes Cancer, 2 (4), pp. 475-484
  • Marcar, L., Maclaine, N.J., Hupp, T.R., Meek, D.W., Mage-A cancer/testis antigens inhibit p53 function by blocking its interaction with chromatin (2010) Cancer Res, 70 (24), pp. 10362-10370
  • Marine, J.C., Jochemsen, A.G., Mdmx as an essential regulator of p53 activity (2005) Biochem Biophys Res Commun, 331 (3), pp. 750-760
  • Markey, M.P., Regulation of MDM4 (2008) Front Biosci (Landmark Ed), 16, pp. 1144-1156
  • Martins, C.P., Brown-Swigart, L., Evan, G.I., Modeling the therapeutic efficacy of p53 restoration in tumors (2006) Cell, 127 (7), pp. 1323-1334
  • Mathupala, S.P., Ko, Y.H., Pedersen, P.L., Hexokinase II: Cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria (2006) Oncogene, 25 (34), pp. 4777-4786
  • Matoba, S., Kang, J.G., Patino, W.D., Wragg, A., Boehm, M., Gavrilova, O., Hurley, P.J., Hwang, P.M., P53 regulates mitochondrial respiration (2006) Science, 312 (5780), pp. 1650-1653
  • Meek, D.W., Knippschild, U., Posttranslational modification of MDM2 (2003) Mol Cancer Res, 1 (14), pp. 1017-1026
  • Mills, A.A., Zheng, B., Wang, X.J., Vogel, H., Roop, D.R., Bradley, A., P63 is a p53 homologue required for limb and epidermal morphogenesis (1999) Nature, 398 (6729), pp. 708-713
  • Miyashita, T., Reed, J.C., Tumor suppressor p53 is a direct transcriptional activator of the human bax gene (1995) Cell, 80 (2), pp. 293-299
  • Moll, U.M., Petrenko, O., The MDM2-p53 interaction (2003) Mol Cancer Res, 1 (14), pp. 1001-1008
  • Moll, U.M., Riou, G., Levine, A.J., Two distinct mechanisms alter p53 in breast cancer: Mutation and nuclear exclusion (1992) Proc Natl Acad Sci U S A, 89 (15), pp. 7262-7266
  • Moll, U.M., Laquaglia, M., Benard, J., Riou, G., Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors (1995) Proc Natl Acad Sci U S A, 92 (10), pp. 4407-4411
  • Monte, M., Simonatto, M., Peche, L.Y., Bublik, D.R., Gobessi, S., Pierotti, M.A., Rodolfo, M., Schneider, C., MAGE-A tumor antigens target p53 transactivation function through histone deacety-lase recruitment and confer resistance to chemotherapeutic agents (2006) Proc Natl Acad Sci U S A, 103 (30), pp. 11160-11165
  • Morey, L., Helin, K., Polycomb group protein-mediated repression of transcription (2010) Trends Biochem Sci, 35 (6), pp. 323-332
  • Moroni, M.C., Hickman, E.S., Lazzerini Denchi, E., Caprara, G., Colli, E., Cecconi, F., Muller, H., Helin, K., Apaf-1 is a transcriptional target for E2F and p53 (2001) Nat Cell Biol, 3 (6), pp. 552-558
  • Muller, P.A., Vousden, K.H., P53 mutations in cancer (2013) Nat Cell Biol, 15 (1), pp. 2-8
  • Muller, P.A., Vousden, K.H., Mutant p53 in cancer: New functions and therapeutic opportunities (2014) Cancer Cell, 25 (3), pp. 304-317
  • Muller, M., Wilder, S., Bannasch, D., Israeli, D., Lehlbach, K., Li-Weber, M., Friedman, S.L., Krammer, P.H., P53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs (1998) J Exp Med, 188 (11), pp. 2033-2045
  • Murray-Zmijewski, F., Lane, D.P., Bourdon, J.C., P53/p63/p73 isoforms: An orchestra of isoforms to harmonise cell differentiation and response to stress (2006) Cell Death Differ, 13 (6), pp. 962-972
  • Nakano, K., Vousden, K.H., PUMA, a novel proapoptotic gene, is induced by p53 (2001) Mol Cell, 7 (3), pp. 683-694
  • Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Tanaka, N., Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis (2000) Science, 288 (5468), pp. 1053-1058
  • Oliner, J.D., Pietenpol, J.A., Thiagalingam, S., Gyuris, J., Kinzler, K.W., Vogelstein, B., Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53 (1993) Nature, 362 (6423), pp. 857-860
  • Pearson, M., Carbone, R., Sebastiani, C., Cioce, M., Fagioli, M., Saito, S., Higashimoto, Y., Pelicci, P.G., PML regulates p53 acetylation and premature senescence induced by oncogenic Ras (2000) Nature, 406 (6792), pp. 207-210
  • Petitjean, A., Achatz, M.I., Borresen-Dale, A.L., Hainaut, P., Olivier, M., TP53 mutations in human cancers: Functional selection and impact on cancer prognosis and outcomes (2007) Oncogene, 26 (15), pp. 2157-2165
  • Purdie, C.A., Harrison, D.J., Peter, A., Dobbie, L., White, S., Howie, S.E., Salter, D.M., Hooper, M.L., Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene (1994) Oncogene, 9 (2), pp. 603-609
  • Rao, B., Lain, S., Thompson, A.M., P53-based cyclotherapy: Exploiting the ‘guardian of the genome’ to protect normal cells from cytotoxic therapy (2013) Br J Cancer, 109 (12), pp. 2954-2958
  • Reles, A., Wen, W.H., Schmider, A., Gee, C., Runnebaum, I.B., Kilian, U., Jones, L.A., Press, M.F., Correlation of p53 mutations with resistance to platinum-based chemotherapy and shortened survival in ovarian cancer (2001) Clin Cancer Res, 7 (10), pp. 2984-2997
  • Riley, M.F., Lozano, G., The many faces of MDM2 binding partners (2012) Genes Cancer, 3 (3-4), pp. 226-239
  • Riley, T., Sontag, E., Chen, P., Levine, A., Transcriptional control of human p53-regulated genes (2008) Nat Rev Mol Cell Biol, 9 (5), pp. 402-412
  • Rodriguez, R., Rubio, R., Menendez, P., Modeling sarcomagenesis using multipotent mesenchymal stem cells (2012) Cell Res, 22 (1), pp. 62-77
  • Rogel, A., Popliker, M., Webb, C.G., Oren, M., P53 cellular tumor antigen: Analysis of mRNA levels in normal adult tissues, embryos, and tumors (1985) Mol Cell Biol, 5 (10), pp. 2851-2855
  • Rubio, R., Garcia-Castro, J., Gutierrez-Aranda, I., Paramio, J., Santos, M., Catalina, P., Leone, P.E., Rodriguez, R., Deficiency in p53 but not retinoblastoma induces the transformation of mesenchymal stem cells in vitro and initiates leiomyosarcoma in vivo (2010) Cancer Res, 70 (10), pp. 4185-4194
  • Sabapathy, K., Klemm, M., Jaenisch, R., Wagner, E.F., Regulation of ES cell differentiation by functional and conformational modulation of p53 (1997) Embo J, 16 (20), pp. 6217-6229
  • Sax, J.K., Fei, P., Murphy, M.E., Bernhard, E., Korsmeyer, S.J., El-Deiry, W.S., BID regulation by p53 contributes to chemosensitivity (2002) Nat Cell Biol, 4 (11), pp. 842-849
  • Scheffner, M., Werness, B.A., Huibregtse, J.M., Levine, A.J., Howley, P.M., The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53 (1990) Cell, 63 (6), pp. 1129-1136
  • Scherz-Shouval, R., Weidberg, H., Gonen, C., Wilder, S., Elazar, Z., Oren, M., P53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation (2010) Proc Natl Acad Sci U S A, 107 (43), pp. 18511-18516
  • Schwartzenberg-Bar-Yoseph, F., Armoni, M., Karnieli, E., The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression (2004) Cancer Res, 64 (7), pp. 2627-2633
  • Selivanova, G., Therapeutic targeting of p53 by small molecules (2010) Semin Cancer Biol, 20 (1), pp. 46-56
  • Shangary, S., Wang, S., Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: A novel approach for cancer therapy (2009) Annu Rev Pharmacol Toxicol, 49, pp. 223-241
  • Shelling, A.N., Role of p53 in drug resistance in ovarian cancer (1997) Lancet, 349 (9054), pp. 744-745
  • Stambolsky, P., Weisz, L., Shats, I., Klein, Y., Goldfinger, N., Oren, M., Rotter, V., Regulation of AIF expression by p53 (2006) Cell Death Differ, 13 (12), pp. 2140-2149
  • Stegh, A.H., Targeting the p53 signaling pathway in cancer therapy - the promises, challenges and perils (2012) Expert Opin Ther Targets, 16 (1), pp. 67-83
  • Stott, F.J., Bates, S., James, M.C., Mc Connell, B.B., Starborg, M., Brookes, S., Palmero, I., Peters, G., The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2 (1998) Embo J, 17 (17), pp. 5001-5014
  • Takahashi, K., Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors (2006) Cell, 126 (4), pp. 663-676
  • Tan, M., Li, S., Swaroop, M., Guan, K., Oberley, L.W., Sun, Y., Transcriptional activation of the human glutathione peroxidase promoter by p53 (1999) J Biol Chem, 274 (17), pp. 12061-12066
  • Van Leeuwen, I.M., Rao, B., Sachweh, M.C., Lain, S., An evaluation of small-molecule p53 activators as chemoprotectants ameliorating adverse effects of anticancer drugs in normal cells (2012) Cell Cycle, 11 (9), pp. 1851-1861
  • Ventura, A., Kirsch, D.G., Mc Laughlin, M.E., Tuveson, D.A., Grimm, J., Lintault, L., Newman, J., Jacks, T., Restoration of p53 function leads to tumour regression in vivo (2007) Nature, 445 (7128), pp. 661-665
  • Vogelstein, B., Lane, D., Levine, A.J., Surfing the p53 network (2000) Nature, 408 (6810), pp. 307-310
  • Vousden, K.H., Lane, D.P., P53 in health and disease (2007) Nat Rev Mol Cell Biol, 8 (4), pp. 275-283
  • Vousden, K.H., Ryan, K.M., P53 and metabolism (2009) Nat Rev Cancer, 9 (10), pp. 691-700
  • Wade, M., Li, Y.C., Wahl, G.M., MDM2, MDMX and p53 in oncogenesis and cancer therapy (2013) Nat Rev Cancer, 13 (2), pp. 83-96
  • Wei, J., Zaika, E., Zaika, A., P53 family: Role of protein isoforms in human cancer (2012) J Nucleic Acids, 2012, pp. 687359
  • Wise, D.R., Deberardinis, R.J., Mancuso, A., Sayed, N., Zhang, X.Y., Pfeiffer, H.K., Nissim, I., Thompson, C.B., Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction (2008) Proc Natl Acad Sci U S A, 105 (48), pp. 18782-18787
  • Wu, G.S., Burns, T.F., Mc Donald, E.R., III, Jiang, W., Meng, R., Krantz, I.D., Kao, G., El-Deiry, W.S., KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene (1997) Nat Genet, 17 (2), pp. 141-143
  • Xirodimas, D.P., Saville, M.K., Bourdon, J.C., Hay, R.T., Lane, D.P., Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity (2004) Cell, 118 (1), pp. 83-97
  • Xue, W., Zender, L., Miething, C., Dickins, R.A., Hernando, E., Krizhanovsky, V., Cordon-Cardo, C., Lowe, S.W., Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas (2007) Nature, 445 (7128), pp. 656-660
  • Yang, A., Walker, N., Bronson, R., Kaghad, M., Oosterwegel, M., Bonnin, J., Vagner, C., Caput, D., P73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours (2000) Nature, 404 (6773), pp. 99-103
  • Yang, A., Kaghad, M., Caput, D., Mc Keon, F., On the shoulders of giants: P63, p73 and the rise of p53 (2002) Trends Genet, 18 (2), pp. 90-95
  • Yang, B., O'herrin, S.M., Wu, J., Reagan-Shaw, S., Ma, Y., Bhat, K.M., Gravekamp, C., Longley, B.J., MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines (2007) Cancer Res, 67 (20), pp. 9954-9962
  • Yeung, S.J., Pan, J., Lee, M.H., Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer (2008) Cell Mol Life Sci, 65 (24), pp. 3981-3999

Citas:

---------- APA ----------
Giono, L.E., Ladelfa, M.F. & Monte, M. (2015) . p53 at the crossroads between stress response signaling and tumorigenesis: From molecular mechanisms to therapeutic opportunities. Stress Response Pathways in Cancer: From Molecular Targets to Novel Therapeutics, 51-73.
http://dx.doi.org/10.1007/978-94-017-9421-3_4
---------- CHICAGO ----------
Giono, L.E., Ladelfa, M.F., Monte, M. "p53 at the crossroads between stress response signaling and tumorigenesis: From molecular mechanisms to therapeutic opportunities" . Stress Response Pathways in Cancer: From Molecular Targets to Novel Therapeutics (2015) : 51-73.
http://dx.doi.org/10.1007/978-94-017-9421-3_4
---------- MLA ----------
Giono, L.E., Ladelfa, M.F., Monte, M. "p53 at the crossroads between stress response signaling and tumorigenesis: From molecular mechanisms to therapeutic opportunities" . Stress Response Pathways in Cancer: From Molecular Targets to Novel Therapeutics, 2015, pp. 51-73.
http://dx.doi.org/10.1007/978-94-017-9421-3_4
---------- VANCOUVER ----------
Giono, L.E., Ladelfa, M.F., Monte, M. p53 at the crossroads between stress response signaling and tumorigenesis: From molecular mechanisms to therapeutic opportunities. Stress Response Pathways in Cancer: From Molecular Targets to Novel Therapeutics. 2015:51-73.
http://dx.doi.org/10.1007/978-94-017-9421-3_4