Parte de libro

Gattelli, A.; Abba, M.C.; Naipauer, J.; Goddio, M.V.; Tocci, J.M.; Hynes, N.E.; Kordon, E.C. "Progression of hormone-dependent mammary tumors after dormancy: Role of wnt pathway" (2014) Tumor Dormancy, Quiescence, and Senescence: Aging, Cancer, and Noncancer Pathologies. 3:59-75
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

The cancer stem cell theory suggests the existence of cells within breast cancers that possess the ability to self-renew and differentiate, albeit in a deregulated manner, which sustains tumor progression. Therefore, latent breast tumors and/or their metastasis may eventually resume growth thorough signals impacting on cancer stem cells and their niche. Since it has been determined that the Wingless Related Protein (Wnt) signaling is a likely niche factor and regulator of Mammary Stem Cells dynamics, it is conceivable that this pathway play a significant role in the "awakening" of dormant tumors. We have previously shown that in virgin females, MMTV-induced pregnancy-dependent (ER+PR+) tumor transplants were able to remain dormant for up to 300 days, but were able to resume growth after hormone stimulation. In a subsequent transplant generation, all these tumors became ER-PR- and grew in virgin females, indicating that cancer dormancy facilitated progression to hormone-independence. Our data also showed that mutations altering expression of genes involved in the Wnt pathway were prone to be selected during progression. To gain more insight into the mechanisms underlying these observations, we compared the gene expression profile of tumors that either underwent or not dormancy before progressing to hormone-independency. Confirming our previously reported data, we found that the most significant up-regulated gene in hormone-independent tumors that progressed after dormancy was Wnt1. In addition, in this group we have determined a systematic down- modulation of previously described mediators of normal pubertal mammary gland development. Using a hierarchical clustering analysis to classify breast cancer patients, we have also identified a specific group of breast carcinomas with significant modulation of genes also deregulated in the MMTV-induced tumors that resumed growth after dormancy. Interestingly, that group of human samples was mainly composed by patients with basallike breast carcinomas, which also showed down-regulation of genes associated to pubertal mammary development. Therefore, we believe that the cluster of co-regulated genes in basal human breast cancer and mouse mammary tumors resuming growth after dormancy might be mechanistically associated to the activation of Wnt pathway, which might induce proliferation from mammary progenitor basal cells. © Springer Science+Business Media Dordrecht 2014. All rights are reserved.

Registro:

Documento: Parte de libro
Título:Progression of hormone-dependent mammary tumors after dormancy: Role of wnt pathway
Autor:Gattelli, A.; Abba, M.C.; Naipauer, J.; Goddio, M.V.; Tocci, J.M.; Hynes, N.E.; Kordon, E.C.
Filiación:IFIBYNE-CONICET, Dpto Qca Biologica, FCEN, Buenos Aires, Argentina
Año:2014
Volumen:3
Página de inicio:59
Página de fin:75
DOI: http://dx.doi.org/10.1007/978-94-017-9325-4_6
Título revista:Tumor Dormancy, Quiescence, and Senescence: Aging, Cancer, and Noncancer Pathologies
Título revista abreviado:Tumor Dormancy, Quiescence, and Senescence: Aging, Cancer, and Noncancer Patholog.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97894017_v3_n_p59_Gattelli

Referencias:

  • Aguirre-Ghiso, J.A., Models, mechanisms and clinical evidence for cancer dormancy (2007) Nat Rev Cancer, 7, pp. 834-846
  • Bai, L., Rohrschneider, L.R., s-SHIP promoter expression marks activated stem cells in developing mouse mammary tissue (2010) Genes Dev, 24, pp. 1882-1892
  • Boras-Granic, K., Chang, H., Grosschedl, R., Hamel, P.A., Lefl is required for the transition of Wnt signaling from mesenchymal to epithelial cells in the mouse embryonic mammary gland (2006) Dev Biol, 295, pp. 219-231
  • Brackstone, M., Townson, J.L., Chambers, A.F., Tumour dormancy in breast cancer: An update (2007) Breast Cancer Res, 9, p. 208
  • Breitling, R., Armengaud, P., Amtmann, A., Herzyk, P., Rank products: A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments (2004) FEBS Lett, 573, pp. 83-92
  • Brenton, J.D., Carey, L.A., Ahmed, A.A., Caldas, C., Molecular classification and molecular forecasting of breast cancer: Ready for clinical application (2005) J Clin Oncol, 23, pp. 7350-7360
  • Brisken, C., Heineman, A., Chavarria, T., Elenbaas, B., Tan, J., Dey, S.K., McMahon, J.A., Weinberg, R.A., Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling (2000) Genes Dev, 14, pp. 650-654
  • Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: An overview of the randomised trials (2005) Lancet, 365, pp. 1687-1717
  • Eriksson, L., Hall, P., Czene, K., Dos Santos Silva, I., McCormack, V., Bergh, J., Bjohle, J., Ploner, A., Mammographic density and molecular subtypes of breast cancer (2012) Br J Cancer, 107, pp. 18-23
  • Gattelli, A., Cirio, M.C., Quaglino, A., Schere-Levy, C., Martinez, N., Binaghi, M., Meiss, R.P., Kordon, E.C., Progression of pregnancy-dependent mouse mammary tumors after long dormancy periods (2004) Involvement of Wnt pathway activation. Cancer Res, 64, pp. 5193-5199
  • Gestl, S.A., Leonard, T.L., Biddle, J.L., Debies, M.T., Gunther, E.J., Dormant Wnt-initiated mammary cancer can participate in reconstituting functional mammary glands (2007) Mol Cell Biol, 27, pp. 195-207
  • Horwitz, K.B., Sartorius, C.A., Progestins in hormone replacement therapies reactivate cancer stem cells in women with preexisting breast cancers: A hypothesis (2008) J Clin Endocrinol Metab, 93, pp. 3295-3298
  • Hsu, W., Shakya, R., Costantini, F., Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice (2001) J Cell Biol, 155, pp. 1055-1064
  • Huang da, W., Sherman, B.T., Stephens, R., Baseler, M.W., Lane, H.C., Lempicki, R.A., DAVID gene ID conversion tool (2008) Bioinformation, 2, pp. 428-430
  • Ikeda, K., Nukumi, N., Iwamori, T., Osawa, M., Naito, K., Tojo, H., Inhibitory function of whey acidic protein in the cell-cycle progression of mouse mammary epithelial cells (EpH4/K6 cells) (2004) J Reprod Dev, 50, pp. 87-96
  • Irizarry, R.A., Bolstad, B.M., Collin, F., Cope, L.M., Hobbs, B., Speed, T.P., Summaries of Affymetrix GeneChip probe level data (2003) Nucleic Acids Res, 31, p. e15
  • Jarde, T., Dale, T., Wnt signalling in murine postnatal mammary gland development (2012) Acta Physiol (Oxf), 204, pp. 118-127
  • Kariagina, A., Xie, J., Leipprandt, J.R., Haslam, S.Z., Amphiregulin mediates estrogen, progesterone, and EGFR signaling in the normal rat mammary gland and in hormone-dependent rat mammary cancers (2011) Horm Cancer, 1, pp. 229-244
  • Kendrick, H., Regan, J.L., Magnay, F.A., Grigoriadis, A., Mitsopoulos, C., Zvelebil, M., Smalley, M.J., Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate (2008) BMC Genomics, 9, p. 591
  • Kim, R.S., Avivar-Valderas, A., Estrada, Y., Bragado, P., Sosa, M.S., Aguirre-Ghiso, J.A., Segall, J.E., Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer (2012) PLoS One, 7, p. e35569
  • Kordon, E.C., Smith, G.H., An entire functional mammary gland may comprise the progeny from a single cell (1998) Development, 125, pp. 1921-1930
  • Kouros-Mehr, H., Werb, Z., Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis (2006) Dev Dyn, 235, pp. 3404-3412
  • Li, Y., Welm, B., Podsypanina, K., Huang, S., Chamorro, M., Zhang, X., Rowlands, T., Varmus, H.E., Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells (2003) Proc Natl Acad Sci U S A, 100, pp. 15853-15858
  • Lindvall, C., Evans, N.C., Zylstra, C.R., Li, Y., Alexander, C.M., Williams, B.O., The Wnt signaling receptor Lrp5 is required for mammary ductal stem cell activity and Wnt1-induced tumorigenesis (2006) J Biol Chem, 281, pp. 35081-35087
  • Lindvall, C., Zylstra, C.R., Evans, N., West, R.A., Dykema, K., Furge, K.A., Williams, B.O., The Wnt co-receptor Lrp6 is required for normal mouse mammary gland development (2009) PLoS One, 4, p. e5813
  • Liu, B.Y., McDermott, S.P., Khwaja, S.S., Alexander, C.M., The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells (2004) Proc Natl Acad Sci U S A, 101, pp. 4158-41563
  • Malanchi, I., Santamaria-Martinez, A., Susanto, E., Peng, H., Lehr, H.A., Delaloye, J.F., Huelsken, J., Interactions between cancer stem cells and their niche govern metastatic colonization (2011) Nature, 481, pp. 85-89
  • McBryan, J., Howlin, J., Napoletano, S., Martin, F., Amphiregulin: Role in mammary gland development and breast cancer (2008) J Mammary Gland Biol Neoplasia, 13, pp. 159-169
  • Meier-Abt, F., Milani, E., Roloff, T., Brinkhaus, H., Duss, S., Meyer, D.S., Klebba, I., Bentires-Alj, M., Parity induces differentiation and reduces Wnt/Notch signaling ratio and proliferation potential of basal stem/progenitor cells isolated from mouse mammary epithelium (2013) Breast Cancer Res, 15, p. R36
  • Meng, S., Tripathy, D., Frenkel, E.P., Shete, S., Naftalis, E.Z., Huth, J.F., Beitsch, P.D., Uhr, J.W., Circulating tumor cells in patients with breast cancer dormancy (2004) Clin Cancer Res, 10, pp. 8152-8162
  • Nam, S.W., Clair, T., Campo, C.K., Lee, H.Y., Liotta, L.A., Stracke, M.L., Autotaxin (ATX), a potent tumor motogen, augments invasive and metastatic potential of ras-transformed cells (2000) Oncogene, 19, pp. 241-247
  • Nukumi, N., Iwamori, T., Kano, K., Naito, K., Tojo, H., Reduction of tumorigenesis and invasion of human breast cancer cells by whey acidic protein (WAP) (2007) Cancer Lett, 252, pp. 65-74
  • Popnikolov, N.K., Dalwadi, B.H., Thomas, J.D., Johannes, G.J., Imagawa, W.T., Association of autotaxin and lysophosphatidic acid receptor 3 with aggressiveness of human breast carcinoma (2012) Tumour Biol, 33, pp. 2237-2243
  • Richert, M.M., Schwertfeger, K.L., Ryder, J.W., Anderson, S.M., An atlas of mouse mammary gland development (2000) J Mammary Gland Biol Neoplasia, 5, pp. 227-241
  • Roarty, K., Rosen, J.M., Wnt and mammary stem cells: Hormones cannot fly wingless (2010) Curr Opin Pharmacol, 10, pp. 643-649
  • Saeed, A.I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., Braisted, J., Quackenbush, J., TM4: A free, open- source system for microarray data management and analysis (2003) Biotechniques, 34, pp. 374-378
  • Saito-Diaz, K., Chen, T.W., Wang, X., Thorne, C.A., Wallace, H.A., Page-McCaw, A., Lee, E., The way Wnt works: Components and mechanism (2013) Growth Factors, 31, pp. 1-31
  • Seifert, J.R., Mlodzik, M., Frizzled/PCP signalling: A conserved mechanism regulating cell polarity and directed motility (2007) Nat Rev Genet, 8, pp. 126-138
  • Shackleton, M., Vaillant, F., Simpson, K.J., Stingl, J., Smyth, G.K., Asselin-Labat, M.L., Wu, L., Visvader, J.E., Generation of a functional mammary gland from a single stem cell (2006) Nature, 439, pp. 84-88
  • Sorlie, T., Molecular classification of breast tumors: Toward improved diagnostics and treatments (2007) Methods Mol Biol, 360, pp. 91-114
  • Sriraman, V., Sinha, M., Richards, J.S., Progesterone receptor-induced gene expression in primary mouse granulosa cell cultures (2009) Biol Reprod, 82, pp. 402-412
  • Szeto, W., Jiang, W., Tice, D.A., Rubinfeld, B., Hollingshead, P.G., Fong, S.E., Dugger, D.L., Pennica, D., Overexpression of the retinoic acid-responsive gene Stra6 in human cancers and its synergistic induction by Wnt-1 and retinoic acid (2001) Cancer Res, 61, pp. 4197-4205
  • Teissedre, B., Pinderhughes, A., Incassati, A., Hatsell, S.J., Hiremath, M., Cowin, P., MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors (2009) PLoS One, 4, p. e4537
  • Tepera, S.B., McCrea, P.D., Rosen, J.M., A beta-catenin survival signal is required for normal lobular development in the mammary gland (2003) J Cell Sci, 116, pp. 1137-1149
  • Tice, D.A., Szeto, W., Soloviev, I., Rubinfeld, B., Fong, S.E., Dugger, D.L., Winer, J., Polakis, P., Synergistic induction of tumor antigens by Wnt-1 signaling and retinoic acid revealed by gene expression profiling (2002) J Biol Chem, 277, pp. 14329-14335
  • Uhr, J.W., Pantel, K., Controversies in clinical cancer dormancy (2011) Proc Natl Acad Sci U S A, 108, pp. 12396-12400
  • van de Vijver, M.J., He, Y.D., Van't Veer, L.J., Dai, H., Hart, A.A., Voskuil, D.W., Schreiber, G.J., Bernards, R., A gene-expression signature as a predictor of survival in breast cancer (2002) N Engl J Med, 347, pp. 1999-2009
  • von Mering, C., Jensen, L.J., Snel, B., Hooper, S.D., Krupp, M., Foglierini, M., Jouffre, N., Bork, P., STRING: Known and predicted protein-protein associations, integrated and transferred across organisms (2005) Nucleic Acids Res, 33, pp. D433-D437
  • Wilson, C.L., Miller, C.J., Simpleaffy: A BioConductor package for Affymetrix Quality Control and data analysis (2005) Bioinformatics, 21, pp. 3683-3685
  • Zeng, Y.A., Nusse, R., Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture (2010) Cell Stem Cell, 6, pp. 568-577
  • Zhang, J., Li, Y., Liu, Q., Lu, W., Bu, G., Wnt signaling activation and mammary gland hyperplasia in MMTV-LRP6 transgenic mice: Implication for breast cancer tumorigenesis (2009) Oncogene, 29, pp. 539-549

Citas:

---------- APA ----------
Gattelli, A., Abba, M.C., Naipauer, J., Goddio, M.V., Tocci, J.M., Hynes, N.E. & Kordon, E.C. (2014) . Progression of hormone-dependent mammary tumors after dormancy: Role of wnt pathway. Tumor Dormancy, Quiescence, and Senescence: Aging, Cancer, and Noncancer Pathologies, 3, 59-75.
http://dx.doi.org/10.1007/978-94-017-9325-4_6
---------- CHICAGO ----------
Gattelli, A., Abba, M.C., Naipauer, J., Goddio, M.V., Tocci, J.M., Hynes, N.E., et al. "Progression of hormone-dependent mammary tumors after dormancy: Role of wnt pathway" . Tumor Dormancy, Quiescence, and Senescence: Aging, Cancer, and Noncancer Pathologies 3 (2014) : 59-75.
http://dx.doi.org/10.1007/978-94-017-9325-4_6
---------- MLA ----------
Gattelli, A., Abba, M.C., Naipauer, J., Goddio, M.V., Tocci, J.M., Hynes, N.E., et al. "Progression of hormone-dependent mammary tumors after dormancy: Role of wnt pathway" . Tumor Dormancy, Quiescence, and Senescence: Aging, Cancer, and Noncancer Pathologies, vol. 3, 2014, pp. 59-75.
http://dx.doi.org/10.1007/978-94-017-9325-4_6
---------- VANCOUVER ----------
Gattelli, A., Abba, M.C., Naipauer, J., Goddio, M.V., Tocci, J.M., Hynes, N.E., et al. Progression of hormone-dependent mammary tumors after dormancy: Role of wnt pathway. Tumor Dormancy, Quiescence, and Senescence: Aging, Cancer, and Noncancer Patholog. 2014;3:59-75.
http://dx.doi.org/10.1007/978-94-017-9325-4_6