Parte de libro

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

The different processes responsible for climate and atmospheric circulation forcing and their relevance on the general circulation of the Southern South America together with the conditions over Patagonia, for the period of the Gondwana supercontinent, are identified in this chapter. During the history of this supercontinent, the main paleoclimate forcings were as follows: (1) the continental drift that affected latitude, elevation, and topography; (2) changes in the amount of greenhouse gases in the Earth’s atmosphere; and (3) volcanic activity. The paleoatmospheric circulation is analyzed in special sections according to age, Early Triassic to Early Jurassic, Middle to Late Jurassic, and Cretaceous, accordingly with the key changes in the ocean-land distribution and locations of the continents. Different paleoclimatic modeling scenarios through the periods are reviewed and compared with proxy data. From both sources of information, it arises that the opening of the Hispanic Corridor and the formation of the Atlantic Ocean were the chief factors that produced the strong climatic changes registered from the Triassic to the Cretaceous and the remarkable difference with current climate conditions. Other important factors were the variations in the volume of greenhouse gases, especially CO2, which is related to volcanic activity and changes in the heat transport through the oceans. The observed results suggest that strong monsoon conditions dominated this period of the Gondwana supercontinent. However, there are large differences with respect to the impact of the various climatic forcings between model simulations of circulation general conditions in the Cretaceous. An extensive list of references provides detailed and updated information on the topics covered in this chapter. © Springer Science+Business Media Dordrecht 2014.

Registro:

Documento: Parte de libro
Título:Modeling the atmospheric circulation and climatic conditions over southern south america during the late history of the gondwana supercontinent
Autor:Compagnucci, R.H.
Filiación:DCAO/Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Ciudad Universitaria, Guiraldes 2160, Buenos Aires, C1428EGA, Argentina
Palabras clave:Forcing of climatic change; Gondwana; Greenhouse gases; Palaeoatmospheric circulation; Paleoclimate modeling
Año:2014
Página de inicio:113
Página de fin:134
DOI: http://dx.doi.org/10.1007/978-94-007-7702-6_6
Título revista:Gondwana Landscapes in Southern South America: Argentina, Uruguay and Southern Brazil
Título revista abreviado:Gondwana Landscapes in South. S. Am.: Argentina, Uruguay and South. Brazil
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97894007_v_n_p113_Compagnucci

Referencias:

  • Arias, C., Palaeoceanography and biogeography in the Early Jurassic Panthalassa and Tethys Oceans (2008) Gondwana Res, 14, pp. 306-315
  • Barron, E.J., A warm, equable Cretaceous: The nature of the problem (1983) Earth Sci Rev, 19, pp. 305-338
  • Barron, E.J., Fawcett, P.J., The climate of Pangaea: A review of climate model simulations of the Permian (1995) The Permian of Northern Pangea, 1, pp. 37-52. , Scholle PA, Peryt TM, Ulmer- Scholle DS (eds), Springer, Berlin
  • Berner, R.A., Kothavala, Z., GEOCARB III: A revised model of atmospheric CO2 over phanerozoic time (2001) Am J Sci, 301, pp. 182-204
  • Bice, K.L., Birgel, D., Meyers, P.A., Dahl, K.A., Hinrichs, K., Norris, R.D., A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations (2006) Paleoceanography, 21, p. PA2002
  • Bush, A.B.G., Numerical simulation of the Cretaceous Tethys circumglobal current (1997) Science, 275, pp. 807-810
  • Bush, A.B.G., Philander, S.G.H., The late Cretaceous: Simulation with a coupled atmosphere-ocean GCM (1997) Paleoceanography, 21, pp. 475-516
  • Cavallotto, J.L., Violante, R.A., Hernández-Molina, F.J., Geological aspects and evolution of the Patagonian continental margin (2011) Biol J Linn Soc, 103, pp. 346-362
  • Chandler, M., Rind, D., Ruedy, R., Pangean climate during the Early Jurassic: GCM simulations and the sedimentary record of paleoclimate (1992) Bull Geol Soc Am, 104, pp. 543-559
  • Crowley, T.J., North, G.R., (1999) Paleoclimatology, p. 360. , Oxford University Press, New York
  • Crowley, T.J., Hyde, W.T., Short, D.A., Seasonal cycle variations on the supercontinent of Pangea (1989) Geology, 17, pp. 457-460
  • Davies, A., (2006) High resolution palaeoceanography and palaeoclimatology from mid and high latitude Late Cretaceous laminated sediments, p. 274. , Unpublished doctoral dissertation, Faculty of Engineering Science and Mathematics, School of Ocean and Earth Science, University of Southampton, Southampton
  • DeConto, R.M., Pollard, D., Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 (2003) Nature, 421, pp. 245-249
  • Dubiel, R.F., Parrish, J.T., Parrish, J.M., Good, S.C., The Pangaean megamonsoon-evidence from the Upper Triassic Chinle Formation, Colorado Plateau (1991) Palaios, 6, pp. 347-370
  • Fawcett, P.J., Barron, E.J., Robison, V.D., Katz, B.J., The climatic evolution of India and Australia from the Late Permian toMid-Jurassic: A comparison of climate model results with the geologic record (1994) Geol Soc Am Spec Pap, 288, pp. 139-158
  • Floegel, S., (2001) On the influence of precessional Milankovitch cycles on the Late Cretaceous climate system: Comparison of GCM-results, geochemical, and sedimentary proxies for the Western Interior Seaway of North America, , Universitätsbibliothek der Christian-Albrechts-Universität Kiel, Kiel
  • Frakes, L.A., Estimating the global thermal state from Cretaceous sea surface and continental temperature data (1999) Spec Pap-Geol Soc Am, pp. 49-58
  • Gradstein, F., Ogg, J., Smith, A., Bleeker, W., A new Geologic Time Scale, with special reference to Precambrian and Neogene (2004) Episodes, 27, pp. 83-100
  • Haq, B.U., Hardenbol, J., Vail, P.R., Chronology of fluctuating sea levels since the Triassic (250 million years ago to present) (1987) Science, 235, pp. 1156-1167
  • Hay, W.W., Evolving ideas about the Cretaceous climate and ocean circulation (2008) Cretac Res, 29 (5-6), pp. 725-753
  • Hay, W.W., Flögel, S., Söding, E., Is the initiation of glaciation of the Cretaceous Ocean-Climate System on Antarctica related to a change in the structure of the ocean? (2005) Glob Planet Change (Geol Soc Am Spec), 45, pp. 23-33
  • Haywood, A.M., Valdes, P.J., Markwick, P.J., Cretaceous (Wealden) climates: A modeling perspective (2004) Cretac Res, 25, pp. 303-311
  • Hotinski, R.M., Toggweiller, J.R., Impact of a Tethyan circumglobal passage on ocean heat transport and “equable” climates (2003) Paleoceanography, 18 (1), p. 1007
  • Huber, B.T., MacLeod, K.G., Wing, S.L., (2000) Warm climates in earth history, p. 462. , Cambridge University Press, Cambridge
  • Iglesias Llanos, M.P., Riccardi, A.C., Singer, S.E., Palaeomagnetic study of Lower Jurassic marine strata from the Neuquén Basin, Argentina: A new Jurassic apparent polar wander path for South America (2006) Earth Planet Sci Lett, 252, pp. 379-397
  • Kump, L.R., Pollard, D., Amplification of Cretaceous warmth by biological cloud feedbacks (2008) Science, 320, p. 195
  • Kutzbach, J.E., Gallimore, R.G., Pangaean climates: Megamonsoons of the megacontinent (1989) J Geophys Res, 94 (D3), pp. 3341-3357
  • Kutzbach, J.E., Guetter, P.J., Washington, W.M., Simulated circulation of an idealized ocean for Pangaean time (1990) Paleoceanography, 5 (3), pp. 299-317
  • Markwick, P.J., Valdes, P.J., (2002) A quantitative evaluation and application of the results of a Maastrichtian (Late Cretaceous) coupled ocean-atmosphere experiment using the HadCM3 AOGCM, , Cretaceous Climate and Oceans Dynamics Workshop, 14-17 July 2002, The Nature Place, Florissant, CO, USA
  • Moore, G.T., Hayashida, D.N., Ross, C.A., Jacobson, S.R., Palaeoclimate of the Kimmeridgian/Tithonian (Late Jurassic) world. I. Results using a general circulation model (1992) Palaeogeogr Palaeoclimatol Palaeoecol, 93, pp. 113-150
  • Moore, G.T., Sloan, L.C., Hayashida, D.N., Umrigar, N.P., Paleoclimate of the Kimmeridge/Tithonian (Late Jurassic) world. II. Sensitivity tests comparing three different paleotopographic settings (1992) Palaeogeogr Palaeoclimatol Palaeoecol, 95, pp. 229-252
  • Otto-Bliesner, B.L., Brady, E.C., Shields, C., Late Cretaceous ocean: Coupled simulations with the National Center for Atmospheric Research Climate System Model (2002) J Geophys Res, p. 107
  • Poulsen, C.J., Paleoclimate modeling, pre-quaternary (2008) Encyclopedia of paleoclimatology and ancient environments, pp. 700-709. , Gornitz V (ed), Kluwer Academic, Dordrecht
  • Poulsen, C.J., Gendaszek, A.S., Jacob, R., Did the rifting of the Atlantic Ocean cause the Cretaceous thermal maximum? (2003) Geology, 31, pp. 115-118
  • Poulsen, C.J., Pollard, D., White, T.S., General circulation model simulation of the •18O content of continental precipitation in the middle Cretaceous: A model-proxy comparison (2007) Geology, 35, pp. 199-202
  • Rais, P., Louis-Schmid, B., Bernasconi, S.M., Weissert, H., Palaeoceanographic and palaeoclimatic reorganization around the Middle-Late Jurassic transition (2007) Palaeogeogr Palaeoclimatol Palaeoecol, 251, pp. 527-546
  • Rees, P.M., Zeigler, A.M., Valdes, P.J., Jurassic phytogeography and climates: New data and model comparisons (2000) Warm climates in earth history, pp. 297-318. , Huber BT, MacLeod KG, Wing ST (eds), Cambridge University Press, Cambridge
  • Ross, C.A., Ross, J.R.P., Late Paleozoic sea levels and depositional sequences (1987) Timing and depositional history of eustatic sequences: Constraints on seismic stratigraphy, pp. 137-149. , Ross CA, Haman D (eds), Special Publication 24. Cushman Foundation for Foraminiferal Research, Washington, DC
  • Ross, C.A., Ross, J.R.P., Late Paleozoic transgressive regressive deposition (1988) Sea level change: An integrated approach, 42, pp. 227-247. , Wilgus CK, Hastings BS, Kendall CGSC, Posamentier HW, Ross CA, Van Wagoner JC (eds), Special Publication, Society of Economic Paleontologists and Mineralogists, Tulsa
  • Royer, D.L., CO2-forced climate thresholds during the Phanerozoic (2006) Geochim Cosmochim Acta, 70, pp. 5665-5675
  • Scher, H.D., Martin, E.E., Timing and climatic consequences of the opening of Drake Passage (2006) Science, 312, pp. 428-430
  • Scherer, C.M.S., Goldberg, K., Palaeowind patterns during the latest Jurassic-earliest Cretaceous in Gondwana: Evidence from aeolian cross-strata of the Botucatu Formation, Brazil (2007) Palaeogeogr Palaeoclimatol Palaeoecol, 250 (1-4), pp. 89-100
  • Scotese, C.R., (2001) Atlas of earth history, , PALEOMAP Project, Arlington
  • Scotese, C.R., (2012) PALEOMAP, Earth history and climate history, , http://www.scotese.com/, WWWdocument, Accessed Mar 2012
  • Scotese, C.R., Summerhayes, C.P., A computer model of paleoclimate to predict upwelling in the Mesozoic and Cenozoic (1986) Geobyte, 1, pp. 28-42
  • Sellwood, B.W., Valdes, P.J., Mesozoic climates: General circulationmodels and the rock record (2006) Sediment Geol, 190, pp. 269-287
  • Sellwood, B.W., Valdes, P.J., Price, G.D., Geological evaluation of GCM simulations of Late Jurassic palaeoclimate (2000) Palaeogeogr Palaeoclimatol Palaeoecol, 156, pp. 147-160
  • Sewall, J.O., van deWal, R.S.W., van der Zwan, K., van Ooosterhout, C., Dijkstra, H.A., Scotese, C.R., Climate model boundary conditions for four Cretaceous time slices (2007) Clim Past, 3, pp. 647-657
  • Sijp, W.P., England, M.H., Effect of the Drake Passage throughflow on global climate (2004) J Phys Oceanogr, 34, pp. 1254-1266
  • Trenberth, K.E., (1992) Climate system modeling, p. 788. , Cambridge University Press, New York
  • Divisions of geologic time-major chronostratigraphic and geochronologic units: U.S (2010) Geological Survey Fact Sheet 2010-3059, p. 2
  • Valdes, P.J., Atmospheric general circulation models of the Jurassic (1993) Philos Trans R Soc B, 341 (1297), pp. 317-326
  • Valdes, P.J., Warm climate forcing mechanisms (2000) Warm climates in earth history, pp. 3-20. , Huber BT, MacLeod KG, Wing SL (eds), Cambridge University Press, Cambridge
  • Valdes, P.J., Sellwood, B.W., A palaeoclimate model for the Kimmeridgian (1992) Palaeogeogr Palaeoclimatol Palaeoecol, 95, pp. 47-72
  • Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Strauss, H., 87Sr/86Sr, •13C and •18O evolution of Phanerozoic seawater (1999) Chem Geol, 161, pp. 59-88
  • Volkheimer, W., Rauhut, O.W.M., Quattrocchio, M.E., Martínez, M.A., Jurassic Paleoclimates in Argentina, a review (2008) Rev Asoc Geol Argent, 63 (4), pp. 549-556
  • Walter, H., (1985) Vegetation of the earth, p. 318. , Springer, Berlin
  • Ward, P.L., Sulfur dioxide initiates global climate change in four ways (2009) Thin Solid Films, 517, pp. 3188-3203
  • Winguth, A.M.E., Heinze, C., Kutzbach, J.E., Maier-Reimer, E., Mikolajewicz, U., Rowley, D., Rees, A., Ziegler, A.M., Simulated ocean circulation of the Middle Permian (2002) Paleoceanography, 17 (5), p. 1057
  • Winterer, E.L., The Tethyan Pacific during Late Jurassic and Cretaceous times (1991) Palaeogeogr Palaeoclimatol Palaeoecol, 87, pp. 253-265
  • Zhou, J., Poulsen, C.J., Pollard, D., White, T.S., Simulation of modern and middle Cretaceous marine •18O with an ocean-atmosphere general circulation model (2008) Paleoceanography, 23, p. PA3223
  • Ziegler, P.A., (1988) Evolution of the Arctic-North-Atlantic and the western Tethys, , American Association of Petroleum Geologists, Tulsa
  • Ziegler, A.M., Scotese, C.R., Barrett, S.F., (1982) Tidal friction and earth’s rotation II, , Brosche F, Sundermann J (eds), Springer, Berlin
  • Ziegler, A.M., Gibbs, M.T., Hulver, M.L., A mini-atlas of oceanic water masses in the Permian period (1998) Proc R Soc Aust, 110 (1-2), pp. 323-343

Citas:

---------- APA ----------
(2014) . Modeling the atmospheric circulation and climatic conditions over southern south america during the late history of the gondwana supercontinent. Gondwana Landscapes in Southern South America: Argentina, Uruguay and Southern Brazil, 113-134.
http://dx.doi.org/10.1007/978-94-007-7702-6_6
---------- CHICAGO ----------
Compagnucci, R.H. "Modeling the atmospheric circulation and climatic conditions over southern south america during the late history of the gondwana supercontinent" . Gondwana Landscapes in Southern South America: Argentina, Uruguay and Southern Brazil (2014) : 113-134.
http://dx.doi.org/10.1007/978-94-007-7702-6_6
---------- MLA ----------
Compagnucci, R.H. "Modeling the atmospheric circulation and climatic conditions over southern south america during the late history of the gondwana supercontinent" . Gondwana Landscapes in Southern South America: Argentina, Uruguay and Southern Brazil, 2014, pp. 113-134.
http://dx.doi.org/10.1007/978-94-007-7702-6_6
---------- VANCOUVER ----------
Compagnucci, R.H. Modeling the atmospheric circulation and climatic conditions over southern south america during the late history of the gondwana supercontinent. Gondwana Landscapes in South. S. Am.: Argentina, Uruguay and South. Brazil. 2014:113-134.
http://dx.doi.org/10.1007/978-94-007-7702-6_6