Parte de libro

Famá, L.M.; Goyanes, S.; Pettarin, V.; Bernal, C.R. "Mechanical behavior of starch-carbon nanotubes composites" (2015) Handbook of Polymer Nanocomposites. Processing, Performance and Application: Volume B: Carbon Nanotube Based Polymer Composites:141-172
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

This chapter is focused on the mechanical behavior of plasticized starch-based nanocomposites reinforced with carbon nanotubes. It starts with a general introduction about the most important materials that involve those nanocomposites, such as starch and multiwalled carbon nanotubes. Then, a presentation of the most relevant published results on the mechanical properties of starch matrix and starch-carbon nanotubes composites is reported. Factors affecting these properties such as crystallinity, water content and plasticizers are discussed. The mechanical behavior of these composites is discussed in separate sections regarding tensile properties, impact behavior, and viscoelastic behavior as well as the most important influencing factors on these properties. Finally, concluding remarks and future trends on the improvement of the mechanical response of starch-carbon nanotubes composites are presented. © Springer-Verlag Berlin Heidelberg 2015.

Registro:

Documento: Parte de libro
Título:Mechanical behavior of starch-carbon nanotubes composites
Autor:Famá, L.M.; Goyanes, S.; Pettarin, V.; Bernal, C.R.
Filiación:Grupo de Materiales Avanzados, INTECIN (UBA-CONICET), Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
LP and MC, Departamento de Física, Facultad de Ciencias Exactas y Naturales, IFIBA - CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
LP and MC, Departamento de Física, Facultad de Ciencias Exactas y Naturales, IFIBA - CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
Grupo de Ciencia e Ingeniería de Polímeros, INTEMA (UNMdP-CONICET), Departamento de Ingeniería en Materiales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
Grupo de Materiales Avanzados, INTECIN (UBA-CONICET), Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
Palabras clave:Biaxial impact behavior; Dynamic mechanical properties; Quasi-Static tensile behavior; Carbon nanotubes; Mechanical properties; Nanocomposites; Nanotubes; Reinforced plastics; Solvents; Starch; Yarn; Carbon nanotubes composites; Dynamic mechanical property; Impact behavior; Mechanical behavior; Mechanical response; Plasticized starch; Quasi-static; Visco-elastic behaviors; Multiwalled carbon nanotubes (MWCN)
Año:2015
Página de inicio:141
Página de fin:172
DOI: http://dx.doi.org/10.1007/978-3-642-45229-1_30
Título revista:Handbook of Polymer Nanocomposites. Processing, Performance and Application: Volume B: Carbon Nanotube Based Polymer Composites
Título revista abreviado:Handb. of Polymer Nanocomposites. Processing, Perform. and Application: Volume B: Carbon Nanotube Based Polymer Composites
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97836424_v_n_p141_Fama

Referencias:

  • Katz, H.S., Milewsky, J.V., (1978) Handbook of Fillers and Reinforcements for Plastics, p. 652. , Van Nostrand Reinhold/Springer, London
  • Shogren, R.L., Lawton, J.W., Doane, W.M., Tiefenbacher, K.F., Structure and morphology of baked starch foams (1998) Polymer, 39, p. 6649
  • Sorrentino, A., Gorrasi, G., Vittoria, V., Potential perspectives of bio-nanocomposites for food packaging applications (2007) Trends Food Sci Technol, 18, p. 84
  • Talja, R.A., Helén, H., Roos, Y.H., Jouppila, K., Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films (2007) Carbohydr Polym, 67, p. 288
  • Fu, S.-Y., Feng, X.-Q., Lauke, B., Mai, Y.-W., Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites (2008) Compos Part B Eng, 39, p. 933
  • Siqueira, G., Bras, J., Dufresne, A., Walled carbon nanotubes (2009) Biomacromolecules, 10, p. 425
  • Wong, M., Paramsothy, M., Xu, X.J., Ren, Y., Li, S., Liao, K., Physical interactions at carbon nanotube-polymer interface (2003) Polymer, 44, p. 7757
  • Liu, H., Xie, F., Yu, L., Chen, L., Li, L., Thermal processing of starch-based polymers (2009) Prog Polym Sci, 34, p. 1348
  • Schwach, E., Avérous, L., Tarch-based biodegradable blends: Morphology and interface properties (2004) Polym Int, 53, p. 2115
  • Hansen, N., Plackett, D., Sustainable films and coatings from hemicelluloses: A review (2008) Biomacromolecules, 9, p. 1494
  • Alvarez, V., Vazquez, A., Influence of fibre chemical modification procedure on the mechanical properties and water absorption of materbi-y/sisal fibre composites (2006) Compos Part A, 37, p. 1672
  • Alemdar, A., Sain, M., Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties (2008) Compos Sci Technol, 68, p. 557
  • Famá, L., Gerschenson, L., Goyanes, S., Starch-vegetable fibre composites to protect food products (2009) Carbohydr Polym, 75, p. 230
  • Famá, L.M., Pettarin, V., Goyanes, S.N., Bernal, C.R., Starch/multi-walled carbon nanotubes composites with improved mechanical properties (2011) Carbohydr Polym, 83, p. 1226
  • Famá, L., Gañán Rojo, P.G., Bernal, C., Goyanes s (2012) biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus (1989) Carbohydr Polym, 87
  • Wisse, E., Govaert, L.E., Meijer, H., Meijer, E.W., Unusual tuning of mechanical properties of thermoplastic elastomers using supramolecular fillers (2006) Macromolecules, 39, p. 7425
  • So, H.H., Cho, J.W., Sahoo, N.G., Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites (2007) Eur Polym J, 43, p. 3750
  • Jia, Z., Wang, Z., Xu, C., Liang, J., Wei, B., Wu, D., Zhu, S., Study on poly(Methyl methacrylate) carbon nanotube composites (1999) Mater Sci Eng A, 271, p. 395
  • Ruan, S.L., Gao, P., Yang, X.G., Yu, T.X., Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes (2003) Polymer, 44, p. 5643
  • Mali, S., Grossmann, E., García, M.A., Martino, M.N., Zaritzky, N.E., Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources (2006) Glass, 75, p. 453
  • Zilli, D., Goyanes, S., Escobar, M.M., Chiliotte, C., Bekeris, V., Cukierman, A.L., Rubiolo, G.H., Comparative analysis of electric, magnetic, and mechanical properties of epoxy matrix composites with different contents of multiple walled carbon nanotubes (2007) Polym Compos, 28, p. 612
  • De Falco, A., Marzocca, A.J., Corcuera, M.A., Ecesiza, A., Mondragon, I., Rubiolo, G.H., Goyanes, S., Accelerator adsorption onto carbon nanotubes surface affects the vulcanization process of styrene-butadiene rubber composites (2009) J Appl Polym Sci, 113, p. 2851
  • De Falco, A., Fascio, M., Lamanna, M., Corcuera, M., Mondragon, I., Rubiolo, G., D’Accorso, N., Goyanes, S., Thermal treatment of the carbon nanotubes and their functionalization with styrene (2009) Physi B Condens Matter, 404, p. 2780
  • Jin, L., Bower, C., Zhou, O., Alignment of carbon nanotubes in a polymer matrix by mechanical stretching (1998) Appl Phys Lett, 73, p. 1197
  • Qian, D., Dickey, E.C., Rews, R., Rantell, T., Load tranfer and deformation mechanism in carbon nanotube- polystyrene composites (2000) Appl Phys Lett, 76, p. 2868
  • Wang, Y., Wu, J., Wei f (2003) a treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio (2003) Carbon, p. 41
  • Potschke, P., Fornes, T.D., Paul, D.R., Rheological behavior of multiwalled carbon nanotube/polycarbonate composites (2002) Polymer, 43, p. 3247
  • Cipriano, B.H., Kashiwagi, T., Raghavan, S.R., Yang, Y., Grulke, E.A., Yamamoto, K., Shields, J.R., Douglas, J.F., Effects of aspect ratio of mwnt on the flammability properties of polymer nanocomposites (2007) Polymer, 48, p. 6086
  • Huang, X.Y., Jiang, P.K., Kim, C., Liu, F., Yin, Y., Morphological, electrical, electromagnetic interference (Emi) shielding, and tribological properties of functionalized multi-walled carbon nanotube/poly-methyl methacrylate (pmma) composites (2009) Eur Polym J, 45, p. 377
  • Zobel, H.F., (1994) Starch Granule Structure. the American Association of Cereal Chemists, p. 1. , Alexander RJ, Zobel HF, Springer, St Saint Paul
  • Zavareze, E., Guerra Días, A., Impact of heat-moisture treatment and annealing in starches: A review (2011) Carbohydr Polym, 83, p. 317
  • Hoover, R., Hughes, T., Chung, H.J., Liu, Q., Composition, molecular structure, properties, and modification of pulse starches: A review (2010) Food Res Int, 43, p. 399
  • Van Der Maarel, M., Van Der Veen, B., Uitdehaag, J., Leemhuis, H., Dijkhuizen, L., Properties and applications of starchconvertingenzymes of the a-amylase family (2002) J Biotechnol, 94, p. 137
  • You, S., Stevenson, S.G., Izydorczyk, M.S., Preston, K.R., Separation and characterization of barley starch polymers by a flow field-flow fractionation technique in combination with multiangle light scattering and differential refractive index detection (2002) Cereal Chem, 79, p. 624
  • Gallant, D.J., Bouchet, B., Baldwin, P.M., Microscopy of starch: Evidence of a new level of granule organization (1997) Carbohydr Polym, 32, p. 177
  • Cuq, J.L., Aymard, C., Cheftel, C., Effects of hypochlorite treatments on a methionyl peptide (1977) Food Chem, 2, p. 309
  • Lelievre, J., Starch gelatinization (1974) J Appl Polym Sci, 18, p. 293
  • Atwell, W.A., Hood, L.F., Lineback, D.R., Varriano-Marston, E., Zobel, H.F., The terminology and methodology associated with basic starch phenomena (1988) Cereal Food World, 33, p. 306
  • Donovan, J.W., Phase transitions of the starch-water system (1979) Biopolymers, 18, p. 263
  • Hoover, R., Hadziyev, D., Characterization of potato starch and its monoglyceride complexes (1981) Starch, 33, p. 290
  • Jenkins, P.J., Donald, A.M., Gelatinization of starch: A combined saxs/waxs/dsc and sans study (1998) Carbohydr Res, 308, p. 133
  • Waigh, T.A., Gidley, M.J., Komanshek, B.U., Donald, A.M., The phase transformations in starch during gelatinisation: A liquid crystalline approach (2000) Carbohydr Res, 328, p. 165
  • Kalichevsky, M.T., Ring, S.G., Incompatibility of amylose and amylopectin in aqueous solution (1987) Carbohyd Res, 162, p. 323
  • Keetels, C., Van Vliet, T., Walstra, P., Elation and retrogradation of concentrated starch system: 2. Retrogradation (1996) Food Hydrocoll, 10, p. 355
  • Doublier, J.L., Llamas, G.A., (1993) A Rheological Description of Amylose-Amylopectin Mixtures. Food Colloids and Polymers: Stability and Mechanical Properties, p. 138. , Dickinson E, Walstra P, Royal Society of Chemistry, Cambridge
  • Xie, F., Yu, L., Su, B., Liu, P., Wang, J., Liu, H., Chen, L., Rheological properties of starches with different amylose/amylopectin ratios (2009) J Cereal Sci, 49, p. 371
  • Olkku, J., Rha, C., Gelatinization of starch and wheat flour starch-a review (1978) Food Chem, 32, p. 293
  • Lim, M.H., Wu, H.B., Reid, D.S., The effect of starch gelatinization and solute concentrations on t g of starch model system (2000) J Sci Food Agric, 80, p. 1757
  • Tester, R.F., Debon, S., Annealing of starch - a review (2000) Int J Biol Macromol, 27, p. 1
  • Famá, L., Goyanes, S., Gerschenson, L., Influence of storage time at room temperature on the physicochemical properties of cassava starch films (2007) Carbohydr Polym, 70, p. 265
  • Famá, L., Estudio de las propiedades físico-químicas de recubrimientos compuestos comestibles y biodegradables. Tesis de doctorado en ciencias exactas y naturales (2008) Área Física. Fceyn, , UBA
  • Chang, P., Chea, P.B., Seow, C.C., Plasticizing-antiplasticizing effects of water on physical properties of tapioca starch films in the glassy state (2000) J Food Sci, 65, p. 445
  • Lan, H., Hoover, R., Jayakody, L., Liu, Q., Donner, E., Baga, M., Asare, E.K., Chibbar, R.N., Impact of annealing on the molecular structure and physicochemical properties of normal, waxy and high amylose bread wheat starches (2008) Food Chem, 111, p. 663
  • Bonacucina, G., Martino, P.D., Piombetti, M., Colombo, A., Roversi, F., Palmieri, G.F., Effect of plasticizers on properties of pregelatinised starch acetate (Amprac 01) free films, international (2006) Journal of Pharmaceutics. J Pharm, 313, p. 72
  • Cao, X., Chen, Y., Chang, P.R., Huneault, M.A., Preparation and properties of plasticized starch/multiwalled carbon nanotubes composites (2007) J Appl Polym Sci, 106, p. 1431
  • Lawton, J.W., Fanta, G.F., Glycerol-plasticized films prepared from starch- poly(Vinyl alcohol) mixtures: Effect of poly(ethylene-eo-acrylic acid) (1994) Carbohydr Polym, 23, p. 261
  • Lourdin, D., Della Valle, G., Colonna, P., Influence of amylose content on starch films and foams (1995) Carbohydr Polym, 27, p. 275
  • Lawton, J.W., Effect of starch type on the properties of starch containing film (1996) Carbohydr Polym, 29, p. 203
  • Arvanitoyannis, I., Billiaderis, C.G., Ogawa, H., Kawasaki, N., Biodegradable films made from low-density polyethylene (Ldpe), rice starch and potato starch for food packaging applications. part 1 (1998) Carbohydr Polym, 36, p. 89
  • García, M.A., Martino, M.N., Zaritzky, N.E., Composite starch-based coatings applied to strawberries (Fragaria ananassa) (2001) Nahrung/Food, 45, p. 267
  • Mali, S., Grossmann, M.V., García, M.A., Martino, M.N., Zaritzky, N.E., Microstructural characterization of yam starch films (2002) Carbohydr Polym, 50, p. 379
  • Vicentini, N.M., Dupuy, N., Leitzelman, M., Cereda, M.P., Sobral, P., Prediction of cassava starch edible film properties by chemometric analysis of infrared spectra (2005) Spectrosc Lett, 38, p. 749
  • Rindlav-Westling, A., Stadingb, M., Gatenholma, P., Structure, barrier and mechanical properties of amylose and amylopectin films (1998) Carbohydr Polym, 36, p. 217
  • Myllearinen, P., Partanen, Sepp, R., Ealea, J., Forssell, P., Effect of glycerol on behaviour of amylose and amylopectin films (2002) Carbohydr Polym, 50, p. 355
  • García, N.L., Famá, L., Dufresne, A., Aranguren, M., Goyanes, S., A comparison between the physico-chemical properties of tuber and cereal starches (2009) Food Res Int, 42, p. 976
  • Van Soest, J.J., Vliegenthart, J.F., Crystallinity in starch plastics: Consequences for material properties (1997) Trends Biotechnol, 15, p. 208
  • Famá, L., Rojas, A.M., Goyanes, S., Gerschenson, L., Mechanical properties of tapioca-starch edible films containing sorbates (2005) LWT, 38, p. 631
  • Talja, R.A., Hele, H., Roos, H., Jouppila, K., Effect of type and content of binary polyol mixtures on physical and mechanical properties of starch-based edible films (2008) Carbohydr Polym, 71, p. 269
  • Ma, X., Yu, J., Wang, N., Glycerol plasticized-starch/multiwall carbon nanotube composites for electroactive polymers (2008) Compos Sci Technol, 68, p. 268
  • Li, R., Liu, C., Ma, J., Studies on the properties of graphene oxide-reinforced starch biocomposites (2011) Carbohydr Polym, 84, p. 631
  • Souza Rosa, R., Rade, C.T., Effect of chitin addition on injection-molded thermoplastic corn starch (2004) J Appl Polym Sci, 92, p. 2706
  • Cheetham, N., Tao, L., Solid state nmr studies on the structural and conformational properties of natural maize starches (1998) Carbohydr Polym, 36, p. 277
  • Biliaderis, C.G., Structures and phase transitions of starch in food systems (1992) Food Technol, 46, p. 98
  • Angellier, H., Molina-Boisseau, S., Dole, P., Dufresne, A., Thermoplastic starch-waxy maize starch nanocrystals nanocomposites (2006) Biomacromalecules, 7, p. 531
  • Hulleman, S., Janssen, F., Feil, H., The role of water during plasticization of native starches (1998) Science, 39, p. 2043
  • Chaudhry, H., (1987) Applied Hydraulic Transients, , 2nd edn. van Nostrand Reinhold, New York
  • Shogren, R.L., Jasberg, B.K., Aging properties of extruded high-amylose starch (1994) J Environ Polym Degrad, 2, p. 99
  • Godet, M.C., Buleon, A., Tran, B., Colonna, P., Structural features of fatty acids-amylose complexes (1993) Carbohydr Polym, 21, p. 91
  • Kalichevski, M., Orford, P.D., Ring, S.G., The retrogradation and gelation of amylopectins from various botanical sources (1990) Carbohydr Polym, 198, p. 49
  • Moniruzzaman, M., Winey, K., Polymer nanocomposites containning carbon nanotubes (2006) Macromolecules, 39, p. 5194
  • Liu, Z., Zhao, L., Chen, M., Yu, J., Effect of carboxylate multiwalled carbon nanotubes on the performance of thermoplastic starch nanocomposites (2011) Carbohydr Polym, 83, p. 447
  • Wang, G.J., Qu, Z.H., Guo, J.L., Li, Y., Liu, L., Study of multiple-wall carbon nanotubes functionalized by the poly(Styrene-co-maleic anhydride) (2006) Acta Chim Sin, 64, p. 2505
  • Muscat, D., Adhikari, B., Adhikari, R., Chaudhary, D.S., (2012) J Food Eng, 109, p. 189 84.
  • Thunwall, M., Boldizar, A., Rigdahl, M., Compression molding and tensile properties of thermoplastic potato starch materials (2006) Biomacromolecules, 7, p. 981
  • Lourdin, D., Bizot, H., Colonna, P.J., Antiplasticization in starch-glycerol films (1997) Appl Polym Sci, 63, p. 1047
  • Gaudin, S., Lourdin, D., Le Botlan, D., Ilari, J.L., Colonna, P.J., Plasticisation and mobility in starch-sorbitol films (1999) Cereal Sci, 29, p. 273
  • Bergo, P., Sobral, P., Prison, J.M., Physical properties of cassava starch films containing glycerol. Food engineering department (2009) FZEA, , University of São Paulo, Brazil
  • Chen, C.-H., Lai, L.-S., Mechanical and water vapor barrier properties of tapioca starch/decolorized hsian-tsao leaf gum films in the presence of plasticizer (2008) Food Hydrocoll, 22, p. 1584
  • Qiao, X., Tang, Z., Sun, K., Plasticization of corn starch by polyol mixtures (2011) Carbohydr Polym, 83, p. 659
  • Biliaderis, C.G., Page, C.M., Maurice, T.J., Juliano, B.O., Thermal characterisation of rice starches: A polymeric approach to phase transitions of granular starch (1986) J Agric Food Chem, 34, p. 6
  • Levine, H., Slade, L., A polymer physico-chemical approach to the study of commercial starch hydrolysis products (Shps) (1986) Carbohydr Polym, 6, p. 213
  • Orford, P.D., Prker, R., Ring, S.G., Smith, A.C., Effect of water as a diluent on the glass-transition behavior of malto-oligosaccharides, amylose and amylopectin (1989) Int J Biol Macromol, 11, p. 91
  • Schenz, T.W., Glass transition and product stability-an overview (1995) Food Hydrocol, 9, p. 307
  • Roos, Y.H., Effect of moisture on the thermal behavior of strawberries studied using differential scanning calorimetry (1987) J Food Sci, 52, p. 146
  • Roos, Y., Karel, M., Plasticizing effect of water on thermal behavior and crystallization of amorphous food models (1991) J Food Sci, 56, p. 38
  • Bizot, H., Le Bail, B., Lroux, J., Davy, P., Parker, P., Buleon, A., Alorimetric evaluation of the glass transition in hydrated, linear and branched polyanhydro glucose compounds (1997) Carbohydr Polym, 32, p. 33
  • Zeleznak, K.J., Hoseney, R.C., The glass transition in starch (1987) Cereal Chem, 64, p. 121
  • Mathew, A.P., Dufresne, A., Plasticized wazy maize starch: Effect of polyols and relative humidity on material properties (2002) Biomacromolecules, 3, p. 1101
  • Yang, J., Yu, J., Ma, X., Study on the properties of ethylenebisformamide and sorbitol plasticized corn starch (Esptps) (2006) Carbohydr Polym, 66, p. 110
  • Curvelo, A., Carvalho, A., Agnelli, J., Thermoplastic starch-cellulosic fibers composites: Preliminary results (2001) Carbohydr Polym, 45, p. 183
  • Da Roz, A.L., Carvalho, A., Gandini, A., Curvelo, A., The effects of plasticizers on thermoplastic starch compositions obtained by melt processing (2006) Carbohydr Polym, 63, pp. 417-424
  • Ogale, A.A., Cunningham, P., Dawson, P.L., Acton, J.C., Viscoelastic, thermal, and micro-structural characterization of soy protein isolate film (2000) J Food Sci, 65, p. 672
  • Wilhelm, H.M., Sierakowski, M.R., Souza, G.P., Wypych, F., Starch films reinforced with mineral clay (2003) Carbohydr Polym, 52, p. 101
  • Standing, M., Rindlav-Westling, A., Gatenholm, P., Humidity-induced structural transitions in amylose and amylopectin film (2001) Carbohydr Polym, 45, p. 209
  • Forsell, P., Mikkilea, J., Moates, G., Parker, R., Phase and glass transitions behaviour of concentrated barley starch-glycerol mixtures, a model for thermoplastic starch (1997) Carbohydr Polym, 34, p. 275
  • Fishman, M.L., Coffin, D.R., Konstance, R.P., Onwulata, C.I., Extrusion of pectin/starch blends plasticized with glycerol (2000) Carbohydr Polym, 41, p. 317
  • Baughman, R.H., Cui, C.X., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Kertesz, M., Carbon nanotubes actuors (1999) Sci, 284, p. 1340
  • Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C., (1999) Science of Fullerenes and Carbon Nanotubes, , Academic, San Diego
  • Harris, P., Carbon nanotube and related structures (1999) New Materials for the 21St Century, , Cambridge University Press, Cambridge, UK
  • Nanocyl, (2009), http://www.nanocyl.com/CNT-Expertise-Centre/Carbon-Nanotubes; Coleman, J., Khan, U., Blau, W., Gunko, Y., Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites (2006) Carbon, 44, p. 1624
  • Nuriel, S., Liu, L., Barber, A.H., Wagner, H.D., Direct measurement of multiwall nanotube surface tension (2005) Chem Phys Lett, 404, p. 263
  • Baughman, R.H., Zakhidov, A.A., De Heer, W.A., Carbon nanotubes-the route toward applications (2002) Science, 297, p. 787
  • Bianco, A., Kostarelos, K., Prato, M., Applications of carbon nanotubes in drug delivery (2005) Curr Opin Chem Biol, 9, p. 674
  • Bianco, A., Prato, M., Can carbon nanotubes be considered useful tools for biological applications? (2003) Adv Mater, 15, p. 1765
  • Cai, D., Mataraza, J.M., Qin, Z.H., Huang, Z., Huang, J., Chiles, T.C., Carnahan, D., Ren, Z., Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing (2005) Nat Methods, 2, p. 449
  • Cherukuri, P., Bachilo, S.M., Litovsky, S.H., Weisman, R.B., Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells (2004) J am Chem Soc, 126, p. 15638
  • Mohagheghian, I., McShane, G.J., Stronge, W.J., Impact response of polyethylene nanocomposites (2011) Proc Eng, 10, p. 704
  • Fattahpour, V., Moosavi, M., Mehranpour, M., An experimental investigation on the effect of rock strength and perforation size on sand production (2012) J Petrol Sci Eng, 172, pp. 86-87
  • Krogars, K., Antikainen, O., Heineameaki, J., Laitinen, N., Yliruusi, J., Tablet film-coating with amylose-rich maize starch (2002) Eur J Pharm Sci, 17, p. 23
  • Mehyar, G.F., Han, J.H., Physical and mechanical properties of high amylose rice and pea starch films as affected by relative humidity (2004) J Food Sci, 69, p. 449
  • Krogars, K., Heineameaki, J., Antikainen, O., Karjalainen, M., Yliruusi, J., A novel of amylose corn starch dispersion as an aqueous film coating for tablets (2003) Pharm Develop Technol, 8, p. 211
  • Yan, L., Chang, P.R., Zheng, P., Preparation andcharacterization of starchgrafted multiwall carbonnanotube composites (2011) Carbohydr Polym, 84, p. 1378
  • Star, A., Stoddart, J.F., Dispersion and solubilization of singlewalled carbon nanotubes with a hyperbranched polymer (2002) Macromolecules, 35, p. 7516
  • Ma, X., Chang, P.R., Yu, J., Lu, P., Haracterization of glycerol plasticized-starch (Gps)/carbon black (cb) membranes prepared by melt extrusion and microwave radiation (2008) Carbohydr Polym, 74, p. 895
  • Macking, T.J., (1992) A Comparison of Instrumented Impact Testing and Gardner Impact Testing, , Santa Barbara, CA: Dynatup Products Division General Research Corp
  • Talja, R.A., Roos, Y.H., Phase and state transition effects on dielectric, mechanical, and thermal properties of polyols (2001) Thermochim Acta, 380, p. 109
  • Casey, A., Farrell, G.F., McNamara, M., Byrne, H.J., Chambers, G., Interaction of carbon nanotubes with sugar complexes (2005) Synth Metals, 153, p. 357
  • Shi Kam, N.W., Dai, H., Carbon nanotubes as intracellular protein transporters: Generality and biological functionality (2005) J am Chem Soc, 127, p. 6021
  • Jiang, W., Qiao, W., Sun, K., Mechanical and thermal properties of thermoplastic acetylated starch/poly(Ethylene-co-vinyl alcohol) blends (2006) Carbohydr Polym, 65, p. 139
  • Chang, P.R., Zheng, P., Liu, B., Erson, D.P., Yu, J., Ma, X., Characterization of magnetic soluble starch-functionalized carbon nanotubes and its application for the adsorption of the dyes (2011) J Hazard Mater, 186, p. 2144
  • Bello-Pérez, L.A., Roger, P., Colonna, P., López, P., Macromolecular features of amaranth starch (1998) Cereal Chem, 75, p. 395
  • Pérez, E., Breene, W., Bahanasey, Y., Gelatinizations profiles of peruvian carrot, cocoyam and potato starches a measured with brabender viscoamylograph, rapid viscoanalyzer and differential scanning calorimeter (1998) Starch/Starke, 50, p. 14
  • Yuan, R.C., Thompson, D.B., Boyer, C.D., Fine structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from three wax-containing genotypes in two inbred lines (1993) Cereal Chemistry, 70, p. 81
  • Maaurf, A.G., Che Man, Y.B., Asbi, B.A., Junainah, A.H., Kennedy, J.F., Gelatinization of sago starch in the presence of sucrose and sodium chloride in assessed by differential scanning calorimetry (2001) Carbohydrate Polymers, 45, p. 335
  • Hizukuri, S., Takeda, Y., Manuta, N., Juliano, B.O., Molecular structures of rice starches (1989) Carbohydr Res, 147, p. 227

Citas:

---------- APA ----------
Famá, L.M., Goyanes, S., Pettarin, V. & Bernal, C.R. (2015) . Mechanical behavior of starch-carbon nanotubes composites. Handbook of Polymer Nanocomposites. Processing, Performance and Application: Volume B: Carbon Nanotube Based Polymer Composites, 141-172.
http://dx.doi.org/10.1007/978-3-642-45229-1_30
---------- CHICAGO ----------
Famá, L.M., Goyanes, S., Pettarin, V., Bernal, C.R. "Mechanical behavior of starch-carbon nanotubes composites" . Handbook of Polymer Nanocomposites. Processing, Performance and Application: Volume B: Carbon Nanotube Based Polymer Composites (2015) : 141-172.
http://dx.doi.org/10.1007/978-3-642-45229-1_30
---------- MLA ----------
Famá, L.M., Goyanes, S., Pettarin, V., Bernal, C.R. "Mechanical behavior of starch-carbon nanotubes composites" . Handbook of Polymer Nanocomposites. Processing, Performance and Application: Volume B: Carbon Nanotube Based Polymer Composites, 2015, pp. 141-172.
http://dx.doi.org/10.1007/978-3-642-45229-1_30
---------- VANCOUVER ----------
Famá, L.M., Goyanes, S., Pettarin, V., Bernal, C.R. Mechanical behavior of starch-carbon nanotubes composites. Handb. of Polymer Nanocomposites. Processing, Perform. and Application: Volume B: Carbon Nanotube Based Polymer Composites. 2015:141-172.
http://dx.doi.org/10.1007/978-3-642-45229-1_30