Parte de libro

Lombardo, M.E.; Batlle, A. "Mode of action on Trypanosoma and Leishmania spp." (2018) Sesquiterpene Lactones: Advances in their Chemistry and Biological Aspects:223-240
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

In this chapter, the most common molecular targets and mechanisms of action of anti-trypanosomatid drugs are described: Biosynthesis of sterols, trypano-thione pathway, purine salvage pathway, cysteine proteinases, trans-sialidase, metallocarboxypeptidases, tubulin, calcium homeostasis and pyrophosphate metabolism, heme uptake and degradation, glycolytic pathway, DNA interaction, oxidative stress and apoptosis. Interaction of the sesquiterpene lactones with hemin, the induction of oxidative stress, the inhibition of enzymes as cruzipain and trypano-thione reductase, the apoptosis induction and the ability of this type of compounds to inhibit sterol biosynthesis will be also discussed. © Springer International Publishing AG, part of Springer Nature 2018.

Registro:

Documento: Parte de libro
Título:Mode of action on Trypanosoma and Leishmania spp.
Autor:Lombardo, M.E.; Batlle, A.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
CONICET - Universidad de Buenos Aires, Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Buenos Aires, Argentina
Palabras clave:Anti-trypanosomatid drugs; Apoptosis; Drug targets; Heme; Oxidative stress; Proteinases; Sterol biosynthesis; Trans-sialidase; Trypanothione pathway; Tubulin
Año:2018
Página de inicio:223
Página de fin:240
DOI: http://dx.doi.org/10.1007/978-3-319-78274-4_10
Título revista:Sesquiterpene Lactones: Advances in their Chemistry and Biological Aspects
Título revista abreviado:Sesquiterpene Lactones: Adv. in their Chem. and Biol. Asp.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97833197_v_n_p223_Lombardo

Referencias:

  • Alvarez, V.E., Niemirowicz, G.T., Cazzulo, J.J., The peptidases of Trypanosoma cruzi: Digestive enzymes, virulence factors, and mediators of autophagy and programmed cell death (2012) Biochim Biophys Acta, 1824, pp. 195-206
  • Alvarez, V.E., Niemirowicz, G.T., Cazzulo, J.J., Metacaspases, autophagins and metallocarboxy-peptidases: Potential new targets for chemotherapy of the trypanosomiases (2013) Curr Med Chem, 20, pp. 3069-3077. , Review
  • Amin, D., Cornell, S.A., Gustafson, S.K., Bisphosphonates used for the treatment of bone disorders inhibit squalene synthase and cholesterol biosynthesis (1992) J Lipid Res, 33, pp. 1657-1663
  • Assíria Fontes Martins, T., de Figueiredo Diniz, L., Mazzeti, A.L., Benznidazole/itracon-azole combination treatment enhances anti-Trypanosoma cruzi activity in experimental Chagas disease (2015) PLoS One, 10, p. e0128707
  • Babokhov, P., Sanyaolu, A.O., Oyibo, W.A., A current analysis of chemotherapy strategies for the treatment of human African trypanosomiasis (2013) Pathog Glob Health, 107, pp. 242-252
  • Barrera, P., Sülsen, V.P., Lozano, E., Natural sesquiterpene lactones induce oxidative stress in Leishmania mexicana (2013) Evid Based Complement Alternat Med, 2013, p. 163404
  • Baum, S.G., Wittner, M., Nadler, J.P., Taxol, a microtubule stabilizing agent, blocks the replication of Trypanosoma cruzi (1981) Proc Natl Acad Sci U S A, 78, pp. 4571-4575
  • Benaim, B., Garcia, C.R., Targeting calcium homeostasis as the therapy of Chagas' disease and leishmaniasis - a review (2011) Trop Biomed, 28, pp. 471-481
  • Benaim, G., Paniz Mondolfi, A.E., The emerging role of amiodarone and dronedarone in Chagas disease (2012) Nat Rev Cardiol, 9, pp. 605-609
  • Benaim, G., Hernandez-Rodriguez, V., Mujica-Gonzalez, S., In vitro anti-Trypanosoma cruzi activity of dronedarone, a novel amiodarone derivative with an improved safety profile (2012) Antimicrob Agents Chemother, 56, pp. 3720-3725
  • Benaim, G., Casanova, P., Hernandez-Rodriguez, V., Dronedarone, an amiodarone analog with improved anti-Leishmania mexicana efficacy (2014) Antimicrob Agents Chemother, 58, pp. 2295-2303
  • Brener, Z., Cançado, J.R., Galvão, L.M., An experimental and clinical assay with ketocon-azole in the treatment of Chagas disease (1993) Mem Inst Oswaldo Cruz, 88, pp. 149-153
  • Brengio, S., Belmonte, S., Guerreiro, E., The sesquiterpene lactone dehydroleucodine (DhL) affects the growth of cultured epimastigotes of Trypanosoma cruzi (2000) J Parasitol, 86, pp. 407-412
  • Bryson, K., Besteiro, S., McGachy, H.A., Overexpression of the natural inhibitor of cysteine peptidases in Leishmania mexicana leads to reduced virulence and a Th1 response (2009) Infect Immun, 77, pp. 2971-2978
  • Buckner, F.S., Sterol 14-demethylase inhibitors for Trypanosoma cruzi infections (2008) Adv Exp Med Biol, 625, pp. 61-80
  • Burtoloso, A.C., de Albuquerque, S., Furber, M., Anti-trypanosomal activity of non-peptidic nitrile-based cysteine protease inhibitors (2017) PLoS Negl Trop Dis, 11, p. e0005343
  • Campos-Salinas, J., Cabello-Donayre, M., García-Hernández, R., A new ATP-binding cassette protein is involved in intracellular haem trafficking in Leishmania (2011) Mol Microbiol, 79, pp. 1430-1444
  • Caputto, M.E., Fabian, L.E., Benítez, D., Thiosemicarbazones derived from 1-indanones as new anti-Trypanosoma cruzi agents (2011) Bioorg Med Chem, 19, pp. 6818-6826
  • Chakraborti, S., Das, L., Kapoor, N., Curcumin recognizes a unique binding site of tubulin (2011) J Med Chem, 54, pp. 6183-6196
  • Chatelain, E., Chagas disease drug discovery: Toward a new era (2015) J Biomol Screen, 20, pp. 22-35
  • Chawla, B., Madhubala, R., Drug targets in Leishmania (2010) J Parasit Dis, 34, pp. 1-13
  • Ciccarelli, A., Araujo, L., Batlle, A., Effect of haemin on growth, protein content and the antioxidant defence system in Trypanosoma cruzi (2007) Parasitology, 134, pp. 959-965
  • Ciccarelli, A.B., Frank, F.M., Puente, V., Antiparasitic effect of vitamin B12 on Trypanosoma cruzi (2012) Antimicrob Agents Chemother, 56, pp. 5315-5320
  • Cupello, M.P., Souza, C.F., Buchensky, C., The heme uptake process in Trypanosoma cruzi epimastigotes is inhibited by heme analogues and by inhibitors of ABC transporters (2011) Acta Trop, 120, pp. 211-218
  • Dc-Rubin, S.S., Schenkman, S., Trypanosoma crWuzi trans-sialidase as a multifunctional enzyme in Chagas' disease (2012) Cell Microbiol, 14, pp. 1522-1530
  • Fernandes Rodrigues, J.C., Concepcion, J.L., Rodrigues, C., In vitro activities of ER-119884 and E5700, two potent squalene synthase inhibitors, against Leishmania amazonensis: Antiproliferative, biochemical, and ultrastructural effects (2008) Antimicrob Agents Chemother, 52, pp. 4098-4114
  • Ferreira, R.S., Simeonov, A., Jadhav, A., Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors (2010) J Med Chem, 53, pp. 4891-4905
  • Frasch, A.P., Carmona, A.K., Juliano, L., Characterization of the M32 metallocarboxypep-tidase of Trypanosoma brucei: Differences and similarities with its orthologue in Trypanosoma cruzi (2012) Mol Biochem Parasitol, 184, pp. 63-70
  • Freire-de-Lima, L., Ribeiro, T.S., Rocha, G.M., The toxic effects of piperine against Trypanosoma cruzi: Ultrastructural alterations and reversible blockage of cytokinesis in epimastigote forms (2011) Parasitol Res, 102, pp. 1059-1067
  • Galaka, T., Ferrer Casal, M., Storey, M., Antiparasitic activity of sulfur- and fluorine-containing bisphosphonates against trypanosomatids and apicomplexan parasites (2017) Molecules, 22 (1), p. 82
  • Heby, O., Persson, L., Rentala, M., Targeting the polyamine biosynthetic enzymes: A promising approach to therapy of African sleeping sickness, Chagas' disease, and leishmaniasis (2007) Amino Acids, 33, pp. 359-366
  • Huynh, C., Yuan, X., Miguel, D.C., Heme uptake by Leishmania amazonensis is mediated by the transmembrane protein LHR1 (2012) PLoS Pathog, 8, p. e1002795
  • Jiang, Z., Zhou, Y., Using bioinformatics for drug target identification from the genome (2005) Am J Pharmacogenomics, 5, pp. 387-396. , Review
  • Jimenez, V., Kemmerling, U., Paredes, R., Natural sesquiterpene lactones induce programmed cell death in Trypanosoma cruzi: A new therapeutic target (2014) Phytomedicine, 21, pp. 1411-1418
  • Jimenez-Ortiz, V., Brengio, S.D., Giordano, O., The trypanocidal effect of sesquiterpene lactones helenalin and mexicanin on cultured epimastigotes (2005) J Parasitol, 91, pp. 170-174
  • Karioti, A., Skaltsa, H., Kaiser, M., Trypanocidal, leishmanicidal and cytotoxic effects of anthecotulide-type linear sesquiterpene lactones from Anthemis auriculata (2009) Phytomedicine, 16, pp. 783-787
  • Katsila, T., Spyroulias, G.A., Patrinos, G.P., Computational approaches in target identification and drug discovery (2016) Comput Struct Biotechnol J, 14, pp. 177-184. , Review
  • Kavanagh, K.L., Guo, K., Dunford, J.E., The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs (2006) Proc Natl Acad Sci, 103, pp. 7829-7834
  • Kerr, I.D., Lee, J.H., Farady, C.J., Vinyl sulfones as antiparasitic agents and a structural basis for drug design (2009) J Biol Chem, 284, pp. 25697-25703
  • Kerr, I.D., Wu, P., Marion-Tsukamaki, R., Crystal structures of TbCatB and rhodesain, potential chemotherapeutic targets and major cysteine proteases of Trypanosoma brucei (2010) PLoS Negl Trop Dis, 4, p. e701
  • Lechuga, G.C., Borges, J.C., Calvet, C.M., Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi (2016) Int J Parasitol Drugs Drug Resist, 6, pp. 154-164
  • Leroux, A.E., Krauth-Siegel, R.L., Thiol redox biology of trypanosomatids and potential targets for chemotherapy (2016) Mol Biochem Parasitol, 206, pp. 67-74
  • Manta, B., Comini, M., Medeiros, A., Trypanothione: A unique bis-glutathionyl derivative in trypanosomatids (2013) Biochim Biophys Acta, 1830, pp. 3199-3216
  • Maya, J.D., Cassels, B.K., Iturriaga-Vásquez, P., Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host (2007) Comp Biochem Physiol A Mol Integr Physiol, 146, pp. 601-620
  • McCabe, R., Failure of ketoconazole to cure chronic murine Chagas' disease (1988) J Infect Dis, 158, pp. 1408-1409
  • McCall, L.I., El Aroussi, A., Choi, J.Y., Targeting ergosterol biosynthesis in Leishmania donovani: Essentiality of sterol 14 alpha-demethylase (2015) PLoS Negl Trop Dis, 9, p. e0003588
  • Merli, M.L., Pagura, L., Hernández, J., The Trypanosoma cruzi protein TcHTE is critical for heme uptake (2016) PLoS Negl Trop Dis, 10, p. e0004359
  • Miller, B.R., Roitberg, A.E., Trypanosoma cruzi trans-sialidase as a drug target against Chagas disease (American trypanosomiasis) (2013) Future Med Chem, 5, pp. 1889-1900
  • Moreira, A.A., de Souza, H.B., Amato Neto, V., Evaluation of the therapeutic activity of itraconazole in chronic infections, experimental and human, by Trypanosoma cruzi (1992) Rev Inst Med Trop Sao Paulo, 34, pp. 177-180
  • Mukherjee, S., Huang, C., Guerra, F., Thermodynamics of bisphosphonates binding to human bone: A two-site model (2009) J Am Chem Soc, 131, pp. 8374-8375
  • Nowicki, M.W., Tulloch, L.B., Worralll, L., Design, synthesis and trypanocidal activity of lead compounds based on inhibitors of parasite glycolysis (2008) Bioorg Med Chem, 16, pp. 5050-5061
  • Paniz-Mondolfi, A.E., Pérez-Alvarez, A.M., Lanza, G., Amiodarone and itraconazole: A rational therapeutic approach for the treatment of chronic Chagas' disease (2009) Chemotherapy, 55, pp. 228-233
  • Proto, W.R., Coombs, G.H., Mottram, J.C., Cell death in parasitic protozoa: Regulated or incidental (2013) Nat Rev Microbiol, 11, pp. 58-66
  • Raviolo, M.A., Solana, M.E., Novoa, M.M., Synthesis, physicochemical properties of allopurinol derivatives and their biological activity against Trypanosoma cruzi (2013) Eur J Med Chem, 69, pp. 455-464
  • Rodenko, B., van der Burg, A.M., Wanner, M.J., 2,N 6-disubstituted adenosine analogs with antitrypanosomal and antimalarial activities (2007) Antimicrob Agents Chemother, 51, pp. 3796-3802
  • San Francisco, J., Barría, I., Gutiérrez, B., Decreased cruzipain and gp85/trans-sialidase family protein expression contributes to loss of Trypanosoma cruzi trypomastigote virulence (2017) Microbes Infect, 19, pp. 55-61
  • Saúde-Guimarães, D.A., Perry, K.S., Raslan, D.S., Complete assignments of 1H and 13C NMR data for trypanocidal eremantholide C oxide derivatives (2007) Magn Reson Chem, 45, pp. 1084-1087
  • Sbaraglini, M.L., Bellera, C.L., Fraccaroli, L., Novel cruzipain inhibitors for the chemotherapy of chronic Chagas disease (2016) Int J Antimicrob Agents, 48, pp. 91-95
  • Schmidt, T.J., Brun, R., Willuhn, G., Anti-trypanosomal activity of helenalin and some structurally related sesquiterpene lactones (2002) Planta Med, 68, pp. 750-751
  • Schmidt, T.J., Khalid, S.A., Romanha, A.J., The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases - part I (2012) Curr Med Chem, 19, pp. 2128-2175
  • Scory, S., Stierhof, Y.D., Caffrey, C.R., The cysteine proteinase inhibitor Z-Phe-Ala-CHN2 alters cell morphology and cell division activity of Trypanosoma brucei bloodstream forms in vivo (2007) Kinetoplastid Biol Dis, 6, p. 2
  • Serrano-Martín, X., García-Marchan, Y., Fernandez, A., Amiodarone destabilizes intracellular Ca2+ homeostasis and biosynthesis of sterols in Leishmania mexicana (2009) Antimicrob Agents Chemother, 53, pp. 1403-1410
  • Shang, N., Li, Q., Ko, T.P., Squalene synthase as target for Chagas disease therapeutics (2014) PLoS Pathog, 10, p. e1004114
  • Silva-Jardim, I., Thiemann, O.H., de Anibal, F.F., Leishmaniasis and Chagas disease chemotherapy: A critical review (2014) J Braz Chem Soc, 25, pp. 1810-1823
  • Smirlis, D., Duszenko, M., Ruiz, A.J., Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death (2010) Parasit Vectors, 3, p. 107. , Review
  • Steenkamp, D.J., Thiol metabolism of the trypanosomatids as potential drug targets (2002) IUBMB Life, 53, pp. 243-248
  • Sueth-Santiago, V., Moraes, J.B., Sobral Alves, E.S., The effectiveness of natural diaryl-heptanoids against Trypanosoma cruzi: Cytotoxicity, ultrastructural alterations and molecular modeling studies (2016) PLoS One, 11, p. e0162926
  • Sueth-Santiago, V., Decote-Ricardo, D., Morrot, A., Challenges in the chemotherapy of Chagas disease: Looking for possibilities related to the differences and similarities between the parasite and host (2017) World J Biol Chem, 8, pp. 57-80
  • Sülsen, V.P., Frank, F.M., Cazorla, S.I., Trypanocidal and leishmanicidal activities of sesquiterpene lactones from Ambrosia tenuifolia Sprengel (Asteraceae) (2008) Antimicrob Agents Chemother, 52, pp. 2415-2419
  • Sülsen, V.P., Frank, F.M., Cazorla, S.I., Psilostachyin C: A natural compound with trypanocidal activity (2011) Int J Antimicrob Agents, 37, pp. 536-543
  • Sülsen, V.P., Cazorla, S.I., Frank, F.M., Natural terpenoids from Ambrosia species are active in vitro and in vivo against human pathogenic trypanosomatids (2013) PLoS Negl Trop Dis, 7, p. e2494
  • Sülsen, V.P., Puente, V., Papademetrio, D., Mode of action of the sesquiterpene lactones psilostachyin and psilostachyin C on Trypanosoma cruzi (2016) PLoS One, 11, p. e0150526
  • Tripodi, K.E., Menendez Bravo, S.M., Cricco, J.A., Role of heme and heme-proteins in try-panosomatid essential metabolic pathways (2011) Enzyme Res, 201, p. 873230
  • Turrens, J.F., Oxidative stress and antioxidant defences: A target for the treatment of diseases caused by parasitic protozoa (2004) Mol Asp Med, 25, pp. 211-220
  • Urbina, J.A., Specific treatment of Chagas disease: Current status and new developments (2001) Curr Opin Infect Dis, 14, pp. 733-741
  • Urbina, J.A., Specific chemotherapy of Chagas disease: Relevance, current limitations and new approaches (2010) Acta Trop, 115, pp. 55-68
  • Urbina, J.A., Concepcion, J.L., Caldera, A., In vitro and in vivo activities of E5700 and ER-119884, two novel orally active squalene synthase inhibitors, against Trypanosoma cruzi (2004) Antimicrob Agents Chemother, 48, pp. 2379-2387
  • Vannier-Santos, M.A., Urbina, J.A., Martiny, A., Alterations induced by the antifungal compounds ketoconazole and terbinafine in Leishmania (1995) J Eukaryot Microbiol, 42, pp. 337-346
  • Veiga-Santos, P., Barrias, E.S., Santos, J.F., Effects of amiodarone and posaconazole on the growth and ultrastructure of Trypanosoma cruzi (2012) Int J Antimicrob Agents, 40, pp. 61-71
  • Vieira, P.M., Francisco, A.F., Machado, E.M., Different infective forms trigger distinct immune response in experimental Chagas disease (2012) PLoS One, 7, p. e32912

Citas:

---------- APA ----------
Lombardo, M.E. & Batlle, A. (2018) . Mode of action on Trypanosoma and Leishmania spp. Sesquiterpene Lactones: Advances in their Chemistry and Biological Aspects, 223-240.
http://dx.doi.org/10.1007/978-3-319-78274-4_10
---------- CHICAGO ----------
Lombardo, M.E., Batlle, A. "Mode of action on Trypanosoma and Leishmania spp." Sesquiterpene Lactones: Advances in their Chemistry and Biological Aspects (2018) : 223-240.
http://dx.doi.org/10.1007/978-3-319-78274-4_10
---------- MLA ----------
Lombardo, M.E., Batlle, A. "Mode of action on Trypanosoma and Leishmania spp." Sesquiterpene Lactones: Advances in their Chemistry and Biological Aspects, 2018, pp. 223-240.
http://dx.doi.org/10.1007/978-3-319-78274-4_10
---------- VANCOUVER ----------
Lombardo, M.E., Batlle, A. Mode of action on Trypanosoma and Leishmania spp. Sesquiterpene Lactones: Adv. in their Chem. and Biol. Asp. 2018:223-240.
http://dx.doi.org/10.1007/978-3-319-78274-4_10