Parte de libro

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

The stabilization of pores can be studied by different approaches such as simulations in silico or experimental procedures in vivo or in vitro. The energy to open a pore in a lipid membrane can be delivered by different external stimuli. To disrupt the membrane and initiate the pore opening, this energy has to reach a threshold. Then, once the pore is open, the external stimulus can be modulated to maintain the pore stable in time. This chapter first describes the basics of electropermeabilization, a process also called electroporation, and the basics of molecular dynamics in electropermeabilization. The chapter then describes in detail the molecular changes that lead to the pore opening and evolution by molecular dynamics. The chapter focuses on molecular dynamics because this technique allows the study of pore stabilization at molecular level, the interpretation of the lipid and water molecule rearrangements that are behind this phenomenon, and the visualization of the pore at the scale of size and time, in the order of nanometers and nanoseconds, respectively. Finally, the chapter also describes other approaches where pores remain open or the permeabilized state remains stable for a period of time, such as continuum modeling, experiments in planar membranes, and experiments in cells. The objective of this selection is to relate the results obtained by molecular dynamics with those obtained experimentally, or by other types of modeling, aiming to connect the mechanisms of pore stabilization by molecular dynamics at different scales. © Springer International Publishing AG 2017. All rights are reserved.

Registro:

Documento: Parte de libro
Título:Lipid electropore stabilization
Autor:Fernández, M.L.; Risk, M.R.
Filiación:Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Física del Plasma, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
Palabras clave:Electropermeabilization; Electroporation; Molecular dynamics; Pore stabilization
Año:2017
Volumen:1
Página de inicio:77
Página de fin:93
DOI: http://dx.doi.org/10.1007/978-3-319-32886-7_83
Título revista:Handbook of Electroporation
Título revista abreviado:Handb. of Electroporation
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97833193_v1_n_p77_Fernandez

Referencias:

  • Barnett, A., Weaver, J.C., Electroporation: a unified, quantitative theory of reversible electrical breakdown and mechanical rupture in artificial planar bilayer membranes (1991) Bioelectrochem Bioenerg, 25, pp. 163-182
  • Böckmann, R.A., de Groot, B.L., Kakorin, S., Neumann, E., Grubmüller, H., Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations (2008) Biophys J, 95, pp. 1837-1850
  • Casciola, M., Kasimova, M.A., Rems, L., Zullino, S., Apollonio, F., Tarek, M., Properties of lipid electropores I: Molecular dynamics simulations of stabilized pores by constant charge imbalance (2016) Bioelectrochemistry, 109, pp. 108-116
  • Delemotte, L., Dehez, F., Treptow, W., Tarek, M., Modeling membranes under a transmembrane potential (2008) J Phys Chem B, 112, pp. 5547-5550
  • Fernández, M.L., Reigada, R., Effects of dimethyl sulfoxide on lipid membrane electroporation (2014) J Phys Chem B, 118, pp. 9306-9312
  • Fernández, M.L., Risk, M., Reigada, R., Vernier, P.T., Size-controlled nanopores in lipid membranes with stabilizing electric fields (2012) Biochem Biophys Res Commun, 423, pp. 325-330
  • Gurtovenko, A.A., Anwar, J., Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide (2007) J Phys Chem B, 111, pp. 10453-10460
  • Gurtovenko, A.A., Vattulainen, I., Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study (2005) J Am Chem Soc, 127, pp. 17570-17571
  • Ho, M.-C., Casciola, M., Levine, Z.A., Vernier, P.T., Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores (2013) J Phys Chem B, 117, pp. 11633-11640
  • Humphrey, W., Dalke, A., Schulten, K., VMD - visual molecular dynamics (1996) J Mol Graph, 14, pp. 33-38. , http://www.ks.uiuc.edu/Research/vmoleculardynamics
  • Kirsch, S.A., Böckmann, R.A., Membrane pore formation in atomistic and coarse-grained simulations (2015) Biochim Biophys Acta
  • Kohler, S., Levine, Z.A., García-Fernández, M.A., Ho, M.-C., Vernier, P.T., Electrical analysis of cell membrane poration by an intense nanosecond pulsed electric field using an atomistic-tocontinuum method (2015) IEEE Trans Microwave Theory Techn, 63, pp. 2032-2040
  • Koronkiewicz, S., Kalinowski, S., Bryl, K., Programmable chronopotentiometry as a tool for the study of electroporation and resealing of pores in bilayer lipid membranes (2002) Biochim Biophys Acta, 1561, pp. 222-229
  • Kutzner, C., Grubmüller, H., de Groot, B.L., Zachariae, U., Computational electrophysiology: the molecular dynamics of ion channel permeation and selectivity in atomistic detail (2011) Biophys J, 101, pp. 809-817
  • Leguèbe, M., Silve, A., Mir, L.M., Poignard, C., Conducting and permeable states of cell memabrane submitted to high voltage pulses: mathematichal and numerical studies validated by the experiments (2014) J Theor Biol, 360, pp. 83-94
  • Leontiadou, H., Mark, A.E., Marrink, S.J., Molecular dynamics simulations of hydrophilic pores in lipid bilayers (2004) Biophys J, 86, pp. 2156-2164
  • Leontiadou, H., Mark, A.E., Marrink, S.J., Ions transport across transmembrane pores (2007) Biophys J, 86, pp. 2156-2164
  • Levine, Z.A., Vernier, P.T., Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation (2010) J Membr Biol, 236, pp. 27-36
  • Pakhomov, A.G., Bowman, A.M., Ibey, B.L., Andre, F.M., Pakhomova, O.N., Schoenbach, K.H., Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane (2009) Biochem Biophys Res Commun, 385, pp. 181-186
  • Pakhomova, O.N., Gregory, B.W., Khorokhorina, V.A., Bowman, A.M., Xiao, S., Pakhomov, A.G., Electroporation-induced electrosensitization (2011) PLOS One, 6
  • Piggot, T.J., Holdbrook, D.A., Khalid, S., Electroporation of the E (2011) coli and S. aureus membranes: molecular dynamics simulations of complex bacterial membranes. J Phys Chem B, 115, pp. 13381-13388
  • Polak, A., Velikonja, A., Kramar, P., Tarek, M., Miklavcic, D., Electroporation threshold of POPC lipid bilayers with incorporated polyoxyethylene glycol (C12E8) (2015) J Phys Chem B, 119, pp. 192-200
  • Sachs, J.N., Crozier, P.S., Woolf, T.B., Atomistic simulations of biologically realistic transmembrane potential gradients (2004) J CHem Phys, 121, pp. 10847-10851
  • Silve, A., Brunet, A.G., Al-Sakere, B., Ivorra, A., Mir, L.M., Comparison of the effects of the repetition rate between microsecond and nanosecond pulses: electropermeabilization-induced electro-desensitization? (2014) Biochim Biophys Acta, 1840, pp. 2139-2215
  • Son, R.S., Smith, K.C., Gowrishankar, T.R., Vernier, P.T., Weaver, J.C., Basic features of a cell electroporation model: illustrative behavior for two very different pulses (2014) J Membr Biol, 247, pp. 1209-1228
  • Swezey, R.R., Epel, D., Stable, resealable pores formed in sea urchin eggs by electric discharge (electroporation) permit substrate loading for assay of enzymes in vivo (1989) Cell Regul, 1, pp. 65-74
  • Tarek, M., Membrane electroporation: a molecular dynamics simulation (2005) Biophys J, 88, pp. 4045-4053
  • Tieleman, D.P., The molecular basis of electroporation (2004) BMC Biochem, 5, p. 10
  • Tokman, M., Lee, J.H., Levine, Z.A., Ho, M.-C., Colvin, M.E., Vernier, P.T., Electric field-driven water dipoles: nanoscale architecture of electroporation (2013) PLOS One, 8
  • Troiano, G.C., Tung, L., Sharma, V., Stebe, K.J., The Reduction in Electroporation Voltages by the Addition of a Surfactant to Planar Lipid Bilayers (1998) Biophys J, 75, pp. 880-888
  • Tsong, T.Y., Electroporation of cell membranes (1991) Biophys J, 60, pp. 297-306
  • Vernier, P.T., Ziegler, M.J., Sun, Y., Gundersen, M.A., Tieleman, D.P., Nanopore-facilitated, voltagedriven phosphatidylserine translocation in lipid bilayers-in cells and in silico (2006) Phys Biol, 3, pp. 233-247

Citas:

---------- APA ----------
Fernández, M.L. & Risk, M.R. (2017) . Lipid electropore stabilization. Handbook of Electroporation, 1, 77-93.
http://dx.doi.org/10.1007/978-3-319-32886-7_83
---------- CHICAGO ----------
Fernández, M.L., Risk, M.R. "Lipid electropore stabilization" . Handbook of Electroporation 1 (2017) : 77-93.
http://dx.doi.org/10.1007/978-3-319-32886-7_83
---------- MLA ----------
Fernández, M.L., Risk, M.R. "Lipid electropore stabilization" . Handbook of Electroporation, vol. 1, 2017, pp. 77-93.
http://dx.doi.org/10.1007/978-3-319-32886-7_83
---------- VANCOUVER ----------
Fernández, M.L., Risk, M.R. Lipid electropore stabilization. Handb. of Electroporation. 2017;1:77-93.
http://dx.doi.org/10.1007/978-3-319-32886-7_83