Parte de libro

McDonald, M.P.; Morozov, Y.; Hodak, J.H.; Kuno, M. "Spectroscopy and microscopy of graphene oxide and reduced graphene oxide" (2015) Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications:29-60
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

Graphene oxide (GO) is an important material that provides a scalable approach for obtaining chemically derived graphene. Its optical and electrical properties are largely determined by the presence of oxygen-containing functionalities, which decorate its basal plane. This chemical derivatization results in useful properties such as the existence of a band gap as well as emission spanning both the visible and near infrared. Notably, GO’s optical and electrical properties can be altered through reduction, which proceeds through the removal of these oxygen-containing functional groups. However, widely variable behavior has been observed regarding the evolution of GO’s optical response during reduction. These discrepancies arise from the different reduction methods being used and, in part, from the fact that nearly all prior measurements have been ensemble studies. Consequently, detailed mechanistic studies of GO reduction are needed which can transcend the limitations of ensemble averaging. In this chapter, we show the spectroscopic evolution of GO’s optical properties during photoreduction at the single’sheet level. Laser–induced reduction, in particular, offers a unique and potentially controllable method for producing reduced GO (rGO), a material with properties similar to those of graphene. However, given the complexity of GO’s photoreduction mechanism, microscopic monitoring of the process is essential to understanding and ultimately exploiting this approach. © Springer International Publishing Switzerland 2015.

Registro:

Documento: Parte de libro
Título:Spectroscopy and microscopy of graphene oxide and reduced graphene oxide
Autor:McDonald, M.P.; Morozov, Y.; Hodak, J.H.; Kuno, M.
Filiación:Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
Department of Physics, Taras Shevchenko National University of Kiev, Kiev, Ukraine
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
INQUIMAE-Departamento de Química Inorgánica, Analítica y Química Físca, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
Palabras clave:Absorption; Absorption coefficient; Emission; Fluorescence intermittency; Graphene oxide; Photobrightening; Photolysis; Reduced graphene oxide; Reduction; Absorption; Neutron emission; Optical properties; Photolysis; Reduction; Absorption co-efficient; Fluorescence intermittency; Graphene oxides; Photobrightening; Reduced graphene oxides; Graphene
Año:2015
Página de inicio:29
Página de fin:60
DOI: http://dx.doi.org/10.1007/978-3-319-15500-5_2
Título revista:Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications
Título revista abreviado:Graphene Oxide: Reduct. Recipes, Spectroscopy, and Applications
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97833191_v_n_p29_McDonald

Referencias:

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Electric field effect in atomically thin carbon films (2004) Science, 306, pp. 666-669
  • Nair, R.R., Blake, P., Grigorenko, A.N., Fine structure constant defines visual transparency of graphene (2008) Science, 320, p. 1308
  • Hwang, E.H., Adam, S., Das Sarma, S., Carrier transport in two-dimensional graphene layers (2007) Phys Rev Lett 98:186806-1-186806-4
  • Wu, Z.-S., Ren, W., Gao, L., Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation (2009) ACS Nano, 3, pp. 411-417
  • Balandin, A.A., Ghosh, S., Bao, W., Superior thermal conductivity of single-layer graphene (2008) Nano Lett, 8, pp. 902-907
  • Kim, K.S., Zhao, Y., Jang, H., Large-scale pattern growth of graphene films for stretchable transparent electrodes (2009) Nature, 457, pp. 706-710
  • Wang, X., Ouyang, Y., Li, X., Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors (2008) Phys Rev Lett 100:206803-1-206803-4
  • Chae, S.J., Gunes, F., Kim, K.K., Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation (2009) Adv Mater, 21, pp. 2328-2333
  • Emtsev, K.V., Bostwick, A., Horn, K., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide (2009) Nat Mater, 8, pp. 203-207
  • Zhang, Y.-L., Guo, L., Xia, H., Photoreduction of graphene oxides: Methods, properties, and applications (2014) Adv Opt Mater, 2, pp. 10-28
  • Brodie, B.C., On the atomic weight of graphite (1859) Philos Trans R Soc Lond, 149, pp. 249-259
  • Hummers, W.S., Offeman, R.E., Preparation of graphitic oxide (1958) J am Chem Soc, 80, p. 1339
  • Lerf, A., He, H., Forster, M., Structure of graphite oxide revisited (1998) J Phys Chem B, 102, pp. 4477-4482
  • Krishnan, D., Kim, F., Luo, J., Energetic graphene oxide: Challenges and opportunities (2012) Nano Today, 7, pp. 137-152
  • Stankovich, S., Dikin, D.A., Piner, R.D., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide (2007) Carbon, 45, pp. 1558-1565
  • Wang, X., Zhi, L., Mullen, K., Transparent, conductive graphene electrodes for dye-sensitized solar cells (2008) Nano Lett, 8, pp. 323-327
  • Gilje, S., Dubin, S., Badakhshan, A., Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications (2010) Adv Mater, 22, pp. 419-423
  • Sokolov, D.A., Shepperd, K.R., Orlando, T.M., Formation of graphene features from direct laser-induced reduction of graphite oxide (2010) J Phys Chem Lett, 1, pp. 2633-2636
  • Erickson, K., Erni, R., Lee, Z., Determination of the local chemical structure of graphene oxide and reduced graphene oxide (2010) Adv Mater, 22, pp. 4467-4472
  • Paredes, J.I., Villar-Rodil, S., Solis-Fernandez, P., Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide (2009) Langmuir, 25, pp. 5957-5968
  • Sokolov, D.A., Morozov, Y.V., Mc donald, M.P., Direct observation of single layer graphene oxide reduction through spatially resolved, single sheet absorption/emission microscopy (2014) Nano Lett, 14, pp. 3172-3179
  • Zhou, Y., Bao, Q., Varghese, B., Microstructuring of graphene oxide nanosheets using direct laser writing (2010) Adv Mater, 22, pp. 67-71
  • Eda, G., Lin, Y.-Y., Mattevi, C., Blue photoluminescence from chemically derived graphene oxide (2010) Adv Mater, 22, pp. 505-509
  • Shang, J., Ma, L., Li, J., The origin of fluorescence from graphene oxide (2012) Sci Rep 2: 792-1-792-8
  • Andryushina, N.S., Stroyuk, O.L., Dudarenko, G.V., Photopolymerization of acrylamide induced by colloidal graphene oxide (2013) J Photochem Photobiol A, 256, pp. 1-6
  • Li, D., Muller, M.B., Gilje, S., Processable aqueous dispersions of graphene nanosheets (2008) Nat Nanotechnol, 3, pp. 101-105
  • Chien, C.-T., Li, S.-S., Lai, W.-J., Tunable photoluminescence from graphene oxide (2012) Angew Chem Int Ed, 51, pp. 6662-6666
  • Exarhos, A.L., Turk, M.E., Kikkawa, J.M., Ultrafast spectral migration of photoluminescence in graphene oxide (2013) Nano Lett, 13, pp. 344-349
  • Galande, C., Mohite, A.D., Naumov, A.V., Quasi-molecular fluorescence from graphene oxide (2011) Sci Rep 1:85-1-85-5
  • Luo, Z., Vora, P.M., Mele, E.J., Photoluminescence and band gap modulation in graphene oxide (2009) Appl Phys Lett 94:111909-1-111909-3
  • Loh, K.P., Bao, Q., Eda, G., Graphene oxide as a chemically tunable platform for optical applications (2010) Nat Chem, 2, pp. 1015-10024
  • Gokus, T., Nair, R.R., Bonetti, A., Making graphene luminescent by oxygen plasma treatment (2009) ACS Nano, 3, pp. 3963-3968
  • Mc donald, M.P., Eltom, A., Vietmeyer, F., Direct observation of spatially heterogeneous single-layer graphene oxide reduction kinetics (2013) Nano Lett, 13, pp. 5777-5784
  • Cuong, T.V., Pham, V.H., Tran, Q.T., Photoluminescence and raman studies of graphene thin films prepared by reduction of graphene oxide (2010) Mater Lett, 64, pp. 399-401
  • Chen, J.-L., Yan, X.-P., A dehydration and stabilizer-free approach to production of stable dispersion of graphene nanosheets (2010) J Mater Chem, 20, pp. 4328-4332
  • Hou, X.-L., Li, J.-L., Drew, S.C., Tuning radical species in graphene oxide in aqueous solution by photoirradiation (2013) J Phys Chem C, 117, pp. 6788-6793
  • Li, J.-L., Kudin, K.N., Mc allister, M.J., Oxygen-driven unzipping of graphitic materials (2006) Phys Rev Lett 96:176101-1-176101-4
  • Giblin, J., Vietmeyer, F., Mc donald, M.P., Single nanowire extinction spectroscopy (2011) Nano Lett, 11, pp. 3307-3311
  • Vietmeyer, F., Mc donald, M.P., Kuno, M., Single nanowire microscopy and spectroscopy (2012) J Phys Chem C, 116, pp. 12379-12396
  • Mc donald, M.P., Vietmeyer, F., Kuno, M., Direct measurement of single CdSe nanowire extinction polarization anisotropies (2012) J Phys Chem Lett, 3, pp. 2215-2220
  • Vietmeyer, F., Tchelidze, T., Tsou, V., Electric field-induced emission enhancement and modulation in individual CdSe nanowires (2012) ACS Nano, 6, pp. 9133-9140
  • Mc donald, M.P., Vietmeyer, F., Aleksiuk, D., Supercontinuum spatial modulation spectroscopy: Detection and noise limitations (2013) Rev Sci Instrum, 84. , 113104-1-113104-7
  • Geim, A.K., Novoselov, K.S., The rise of graphene (2007) Nat Mater, 6, pp. 183-191
  • Dreyer, D.R., Park, S., Bielawski, C.W., The chemistry of graphene oxide (2010) Chem Soc Rev, 39, pp. 228-240
  • Chen, W., Yan, L., Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure (2010) Nanoscale, 2, pp. 559-563
  • Shulga, Y.M., Martynenko, V.M., Muradyan, V.E., Gaseous products of thermo- and photo-reduction of graphite oxide (2010) Chem Phys Lett, 498, pp. 287-291
  • Eda, G., Fanchini, G., Chhowalla, M., Large area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material (2008) Nat Nanotechnol, 3, pp. 270-274
  • Cote, L.J., Cruz-Silva, R., Huang, J., Flash reduction and patterning of graphite oxide and its polymer composite (2009) Jam Chem Soc, 131, pp. 11027-11032
  • Matsumoto, Y., Koinuma, M., Ida, S., Photoreaction of graphene oxide nanosheets in water (2011) J Phys Chem C, 115, pp. 19280-19286
  • Guo, H., Peng, M., Zhu, Z., Preparation of reduced graphene oxide by infrared irradiation induced photothermal reduction (2013) Nanoscale, 5, pp. 9040-9048
  • Abdelsayed, V., Moussa, S., Hassan, H.M., Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature (2010) J Phys Chem Lett, 1, pp. 2804-2809
  • Sokolov, D.A., Rouleau, C.M., Geohegan, D.B., Excimer laser reduction and patterning of graphite oxide (2013) Carbon, 53, pp. 81-89
  • Huang, L., Liu, Y., Ji, L.-C., Pulsed laser assisted reduction of graphene oxide (2011) Carbon, 49, pp. 2431-2436
  • Trusovas, R., Ratautas, K., Raciukaitis, G., Reduction of graphite oxide to graphene with laser irradiation (2013) Carbon, 52, pp. 574-582
  • Zhang, Y., Guo, L., Wei, S., Direct imprinting of microcircuits of graphene oxides film by femtosecond laser reduction (2010) Nano Today, 5, pp. 15-20
  • Wang, D., Carlson, M.T., Richardson, H.H., Absorption cross section and interfacial thermal conductance from an individual optically excited single-walled carbon nanotube (2011) ACS Nano, 5, pp. 7391-7396
  • Jeong, H.-K., Lee, Y.P., Jin, M.H., Thermal stability of graphite oxide (2009) Chem Phys Lett, 470, pp. 255-258
  • Plotnikov, V.G., Smirnov, V.A., Alfimov, M.V., The graphite oxide photoreduction mechanism (2011) High Energy Chem, 45, pp. 411-415
  • Lahaye, R., Jeong, H.K., Park, C.Y., Density functional theory of graphite oxide for different oxidation levels (2009) Phys Rev B 79:125435-1-125435-8
  • Smirnov, V.A., Shul’ga, Y.M., Denisov, N.N., Photoreduction of graphite oxide at different temperatures (2012) Nanotechnol Russia, 7, pp. 156-163
  • Ghaderi, N., Paressi, M., First-principle study of hydroxyl functional groups on pristine, defected graphene, and graphene epoxide (2010) J Phys Chem C, 114, pp. 21625-21630
  • Sorescu, D.C., Jordan, K.D., Theoretical study of oxygen adsorption on graphite and the (8,0) single-walled carbon nanotube (2001) J Phys Chem B, 105, pp. 11227-11232

Citas:

---------- APA ----------
McDonald, M.P., Morozov, Y., Hodak, J.H. & Kuno, M. (2015) . Spectroscopy and microscopy of graphene oxide and reduced graphene oxide. Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications, 29-60.
http://dx.doi.org/10.1007/978-3-319-15500-5_2
---------- CHICAGO ----------
McDonald, M.P., Morozov, Y., Hodak, J.H., Kuno, M. "Spectroscopy and microscopy of graphene oxide and reduced graphene oxide" . Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications (2015) : 29-60.
http://dx.doi.org/10.1007/978-3-319-15500-5_2
---------- MLA ----------
McDonald, M.P., Morozov, Y., Hodak, J.H., Kuno, M. "Spectroscopy and microscopy of graphene oxide and reduced graphene oxide" . Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications, 2015, pp. 29-60.
http://dx.doi.org/10.1007/978-3-319-15500-5_2
---------- VANCOUVER ----------
McDonald, M.P., Morozov, Y., Hodak, J.H., Kuno, M. Spectroscopy and microscopy of graphene oxide and reduced graphene oxide. Graphene Oxide: Reduct. Recipes, Spectroscopy, and Applications. 2015:29-60.
http://dx.doi.org/10.1007/978-3-319-15500-5_2