Parte de libro

Tesio, A.; Robledo, S.N.; Granero, A.M.; Fernández, H.; Zon, M.A. "Electroanalytical determinations of luteolin" (2015) Luteolin: Natural Occurrences, Therapeutic Applications and Health Effects:73-100
Estamos trabajando para incorporar este artículo al repositorio

Abstract:

Natural antioxidants have become very important in recent decades because of their well known benefits to human health and the increasingly restricted use of synthetic antioxidants. Flavonoids are one of the groups of natural antioxidants widely produced by the plants as secondary metabolites. They are molecules composed of two benzene rings linked through a chain of three carbon atoms. Flavonoids are widely found in fruits, seeds and vegetables. Luteolin (3',4',5,7-tetrahydroxy-flavone; LUT) belongs to the subclass of flavonoids known as flavones and is rated as one of the most bioactive flavonoids. LUT has a resorcinol group in ring A, and a catechol group in ring B. LUT has beneficial effects on human health, such as cardiovascular protection, anti-allergic, and anticancer activities, anti-ulcer effects, and prevents cataracts. LUT also inhibits platelet aggregation by vasodilating action. LUT is a compound as active as tert- butyl hydroxyanisole (BHA) but more active than α-tocopherol. Different analytical methods have been reported for the deter- mination of LUT. They include thin-layer chromatography, gas chromatography, high-performance liquid chromatography, and capillary electrophoresis, coupled to different detection techniques such as UV spectrophotometry, photo diode array, electrochemical array, etc. Even though these techniques have made possible the highly selective and sensitive quantification of LUT, they present some disadvantages such as high cost, high time consumption and reagents, and high complexity of operation. In recent years, electroanalytical techniques have become very important as analytical tools in the determination of different compounds of biological interest. Compared with chromatographic techniques, they require cheap equipment, short analysis times, low solvent consumption, etc. In this chapter, we report the application of electroanalytical techniques to determine LUT in real matrices. Both, results obtained in our laboratory and those reported by other authors are included. We also discuss the application of chemometric tools in those cases where LUT is present in real samples in the presence of other interfering electroactive species whose electrochemical signals show a strong overlap. © 2015 Nova Science Publishers, Inc.

Registro:

Documento: Parte de libro
Título:Electroanalytical determinations of luteolin
Autor:Tesio, A.; Robledo, S.N.; Granero, A.M.; Fernández, H.; Zon, M.A.
Filiación:NQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales., Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Tecnología Química, Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
Año:2015
Página de inicio:73
Página de fin:100
Título revista:Luteolin: Natural Occurrences, Therapeutic Applications and Health Effects
Título revista abreviado:Luteolin: Nat. Occur., Ther. Appl. and Health Eff.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p73_Tesio

Referencias:

  • Aherne, S.A., O'Brien, N.M., Dietary flavonols: chemistry food content, and metabolism (2002) Nutrition, 18, pp. 75-81
  • Brown, S.D., Tauler, R., Walczak, B., (2009) In: Comprehensivechemometrics. Chemical and biochemical data analysis, , Springer-Verlag, Jena, Germany
  • Butkovic, K., Basaric, N., Bors, K., Kinetic study of flavonoid reaction with stable radical (2004) J. Agri. Food Chem, 52, pp. 2816-2820
  • Chen, J., Zhu, H., Chu, V.M., Jang, Y.S., Son, J.Y., Kim, Y.H., Gyu Son, C., Kang, J.S., Quality control of a herbal medicinal preparation using high-performance liquid chromatographic and capillary electrophoretic methods (2011) J. Pharmaceut. Biomed, 55, pp. 206-210
  • Chi, L., Li, Z., Dong, S., He, P., Wang, Q., Fang, Y., Simultaneous determination of flavonoids and phenolic acids in Chinese herbal tea by beta-cyclodextrin based capillary zone electrophoresis (2009) Microchim. Acta, 167, pp. 179-185
  • Chin, C., Nagaratnam, P., Cytotoxic effect of butein on human colon adenocarcinoma cell proliferation (1994) Cancer Lett, 82, pp. 65-72
  • Cocchi, M., Hidalgo-Hidalgo-de-Cisneros, J.L., Naranjo-Rodríguez, I., Palacios-Santander, J.M., Seeber, R., Ulrici, A., Multicomponent analysis of electrochemical signals in the wavelet domain (2003) Talanta, 59, pp. 735-749
  • Craker, L.E., Simon, J.E., Herbs Spices and Medicinal Plants: Recent Advances in Botany, Horticulture and Pharmacology (1996), 3. , The Howorth Press Inc. New York; De Souza, K.C.B., Schapoval, E.E.S., Bassani, V.L., LC determination of flavonoids: separation of querceti luteolin and 3-O-methylquercetin in Achyroclinesatureioides preparations, (2002) J. Pharmaceut. Biomed., 28, pp. 771-777
  • Despagne, F., Massar, D.L., Neural networks in multivariate calibration (1998) Analyst, 123, pp. 157-178
  • Gholivand, M., Jalalvand, A.R., Goicoechea, H.C., Skov, T., Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid (2014) uric acid, dopamine and nitrite: Application of non-bilinear voltammetric data for exploiting first-order advantage, Talanta, 119, pp. 553-563
  • Godoy-Caballero, M.P., Acedo-Valenzuela, M.I., Galeano-Díaz, T., Simple quantification of phenolic compounds present in the minor fraction of virgin olive oil by LC-DAD-FLD (2012) Talanta, 101, pp. 479-487
  • Graupe, D., In: Principles of artificial neural networks (2007), 2nd Ed. World Scientific Publishing Co. Pte. Ltd Chicago, US; Gründler, P., Zerihum, T., Moler, A., Kirbs, A., A simple method for heating micro electrodes in-situ (1993) J. Electroanal. Chem, 360, pp. 309-314
  • Haaland, D.M., Thomas, E.V., Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information (1988) Anal. Chem., 60, pp. 1193-1202
  • Hendrickson, H.P., Kaufman, A.D., Lunte, C.E., Electrochemistry of catechol-containing flavonoids (1994) J. Pharmaceut. Biomed. Anal., 12, pp. 325-334
  • Hodnick, W.F., Milosavjevic, E.M., Nelson, J.H., Pardini, R.S., Electrochemistry of flavonoids. Relationships between redox potentials inhibition of mitochondrial respiration, and production of oxygen radical by flavonoids (1988) Biochem. Pharmacol, 37, pp. 2607-2611
  • Ibrahim, H., Temerk, Y., Novel sensor for sensitive electrochemical determination of luteolin based on In2O3 nanoparticles modified glassy carbon paste electrode (2015) Sens. Actuat. B-Chem, 206, pp. 744-752
  • Ioku, K., Tsushida, T., Takei, Y., Nakatani, N., Terao, J., Antioxidative activity of quercetin and quercetinmonoglucosides in solution and phospholipid bilayer (1995) Biochim. Biophys. Acta, 1234, pp. 99-104
  • Karakaya, S., El, S.N., Quercetin. luteolin apigenin and kaempferol contents of some foods (1999) Food Chem, 66, pp. 289-292
  • Kühnau, J., The Flavonoids: a class of semi-essential food components: their role in human nutrition (1976) World Rev. Nutr. Diet, 24, pp. 117-190
  • Lee, D., Cuendet, M., Vigo, J.S., Graham, J.G., Cabieses, F., Fong, H.H., Pezzuto, J.M., Kinghorn, A.D., A novel cyclooxygenase-inhibitory stilbenolignan from the seeds of Aiphanes aculeate (2001) Organic Letters, 3, pp. 2169-2171
  • Letan, A., The relation of structure to antioxidant activity of quercetin and some of its derivates (1966) J. Food Sci, 31, pp. 518-523
  • Li, L., Jiang, H., Wu, H., Zeng, S., Simultaneous determination of luteolin apigenin in dog plasma by RP-HPLC J.Pharmaceut. (2005) Biomed., 37, pp. 615-620
  • Li, L.-P., Jiang, H.-D., Determination and assay validation of luteolin and apigenin in human urine after oral administration of tablet of Chrysanthemum morifolium extract by HPLC (2006) J. Pharmaceut. Biomed, 41, pp. 261-265
  • Liu, C.-S., Song, Y.S., Zhang, K.-J., Ryu, J.-C., Kim, M., Zhou, T.-H., Gas chromatographic/mass spectrometric profiling of luteolin and its metabolites in rat urine and bile (1995) J. Pharmaceut. Biomed, 13, pp. 1409-1414
  • Liu, A., Zhang, S., Huang, L., Cao, Y., Yao, H., Chen, W., Lin, X., Electrochemical oxidation of luteolin at glassy carbon electrodes and its application in pharmaceutical analysis (2008) Chem. Pharm. Bull, 56, pp. 745-748
  • López-Lázaro, M., Distribution and biological activities". Mini Rev. Med. Chem. (2009), 9 (1), pp. 31-59; Mann, J., (1992) Secondary Metabolism, pp. 279-280. , (2ndEd.)Oxford University Press, Oxford, UK
  • Martens, H., Naes, T., Multivariate Calibration Wiley Chichester 1989. Mathworks In: "Description of the neural network toolbox. Toolbox NN v6.0.3. Design simulate neural networks, , http://www.mathworks.com/products/neural-network/2010
  • Miller, J.C., Miller, J.N., Estadística para Química Analítica (1993), Addison-Wesley Iberoamericana S.A.Wilmington, Delaware; Moreno-Barón, L., Cartas, R., Merkoçi, A., Alegret, S., delValle, M., Leija, L., Hernández Muñoz, P.R., Application of the wavelet transform coupled with artificial neural networks for quantification purposes in a voltammetric electronic tongue (2006) Sens. Actuat. B-Chem., 113, pp. 487-499
  • Ni, Y., Wang, Y., Kokot, S., Simultaneous determination of three fluoroquinolones by linear sweep stripping voltammetry with the aid of chemometrics (2006) Talanta, 69, pp. 216-225
  • Olivieri, A.C., Goicoeche, H.C., Iñón, F.A., MVC1.an integrated MatLab toolbox for first-order multivariate calibration (2004) Chemmom. Intell. Lab. Syst., 73, pp. 189-197
  • Olivieri, A.C., Goicoechea, H.C., La calibración en Química Analítica (2007) Ediciones, , Universidad Nacional del Litoral Santa Fe, Argentina
  • Osteryoung, J.G., O'Dea, J., (1987) Electroanalytical Chemistry Marcel Dekker New York, pp. 209-234. , A.J.Bard (Ed.)
  • Pang, P., Liu, Y., Zhang, Y., Gao, Y., Hu, Q., Electrochemical determination of luteolin in peanut hulls using graphene and hydroxyapatite nanocomposite modified electrode (2014) Sens. Actuat. B-Chem, 194, pp. 397-403
  • Pin-Der, D., Dong-Bor, Y., Gow-Chin, Y., Extraction identification of an antioxidative component from peanut hulls JAOCS. (1992), 69, pp. 814-818; Pokorny, J., N.Yanishlieva, M.G., Antioxidantes de los alimentos. Aplicacionesprácticas (2001) Acribia S.A.ZaragozaEspaña
  • Riu, J., Rius, F.X., Assessing the accuracy of analytical methods using linear regression with errors in both axes (1996) Anal. Chem, 68, pp. 1851-1857
  • Robledo, S.N., Zachetti, V.G.L., Zon, M.A., Fernández, H., Quantitative determination of tocopherols in edible vegetable oils using electrochemical ultra-microsensors combined with chemometric tools (2013) Talanta, 116, pp. 871-964
  • Robledo, S.N., Tesio, A.Y., Zon, M.A., Ceballos, C.D., Fernández, H., Electrochemical ultra-micro sensors for the determination of synthetic and natural antioxidants in edible vegetable oils (2014) Sens. Actuat. B-Chem., 192, pp. 467-473
  • Rusznyak, S., Szent-Györgi, A., (1936) Vitamin nature of flavones Nature, 138, pp. 798-802
  • Shimoi, K., Okada, H., Furugori, M., Goda, T., Takase, S., Suzuki, M., Hara, Y., Kinae, N., Intestinal absorption of luteolin and luteolin 7-O-ß-glucoside in rats and humans (1998) FEBS Lett, 438, pp. 220-224
  • Singleton, V.L., Naturally occurring food toxicants: Phenolic substances of plant origin common in foods (1981) Advances in Food Research, pp. 149-242. , C.O.Childester E.M.Mrak G.F.Stewart (Eds.):New York: Academic Press
  • Stahl, W., Ale-Agha, N., Polidori, M.C., Non-antioxidant properties of carotenoids (2002) Biol. Chem, 383, pp. 553-558
  • Tarley, C.R.T., Silveira, G., dos Santos, W.N.L., Matos, G.D., da Silva, E.G.P., Bezerra, M.A., Miró, M., Costa Ferreira, S.L., Chemometric tools in electroanalytical chemistry: Methods for optimization based on factorial design and response surface methodology (2009) Microchem. J, 92, pp. 58-67
  • Tesio, A.Y., Granero, A.M., Vettorazzi, N.R., Ferreyra, N.F., Rivas, G.A., Fernández, H., Zon, M.A., Development of an electrochemical sensor for the determination of the flavonoid luteolin in peanut hull samples (2014) Microchem. J., 115, pp. 100-105
  • Tesio, A.Y., Robledo, S.N., Granero, A.M., Fernández, H., Zon, M.A., Simultaneaus electroanalytical detrmination of luteolin and rutin using artificial neural networks Sens. Actuat. (2014) B-Chem., 203, pp. 655-662
  • Ulubelen, A., Miski, M., Neuman, P., Mabry, T.J., Flavonoids of Salvia tomentosa (Labiatae) (1979) J. Nat. Products, 42 (4), pp. 261-263
  • Villela, A., van der Klift, E.J.C., Mattheussens, E.S.G.M., Derksen, G.C.H., Zuilhof, H., van Beeka, T.A., Fast chromatographic separation for the quantitation of the main flavone dyes in Reseda luteola(weld) (2011) J. Chromatogr. A, 1218, pp. 8544-8550
  • Wei, M.-C., Yang, Y.-C., Chiu, H.-F., Hong, S.-J., Development of a hyphenated procedure of heat-reflux and ultrasound-assisted extraction followed by RP-HPLC separation for the determination of three flavonoids content in Scutellariabarbata D. Don (2013) J. Chromatogr. B, 940, pp. 126-134
  • White, P.J., Xing, Y., (1997) Antioxidants from cereals and legumens in natural antioxidants chemistryhealth effects, and applications, pp. 25-63. , FShahidi, (Ed.), AOCS Press, Champaingn, Illinois, US
  • Wold, S., Sjostrom, M., Eriksson, L., PLS-regression: a basic tool of chemometrics (2001) Chemom. Intell. Lab. Syst., 58, pp. 109-130
  • Wu, S.-H., Zhu, B.-J., Huang, Z.-X., Sun, J.-J., A heated pencil lead disk electrode with direct current and its preliminary application for highly sensitive detection of luteolin (2013) Electrochem. Comm, 28, pp. 47-50
  • Yen, G.C., Duh, P.D., Tsai, C.L., Relationship between antioxidant activity and maturity of peanut hulls (1993) J. Agric. Food Chem, 41, pp. 67-70
  • Zhang, Q., Using wavelets network in nonparametric estimation (1997) IEEE Trans. Neural Netw, 8, pp. 227-236
  • Zhang, Q., Li, J., Wang, C., Sun, W., Zhang, Z., Cheng, W., A gradient HPLC method for the quality control of chlorogenic acid linarin and luteolin in FlosChrysanthemiIndici suppository (2007) J. Pharmaceut. Biomed., 43, pp. 753-757
  • Zhao, D., Zhang, X., Feng, L., Qi, Q., Wang, S., Sensitive electrochemical determination of luteolin in peanut hulls using multi-walled carbon nanotubes modified electrodes. (2011) Food Chem., 127, pp. 684-698
  • Zhong, Y.S., Ni, Y.N., Kokot, S., Application of differential pulse stripping voltammetry and chemometrics for the determination of three antibiotic drugs in food samples (2012) Chin. Chem. Lett, 23, pp. 339-342

Citas:

---------- APA ----------
Tesio, A., Robledo, S.N., Granero, A.M., Fernández, H. & Zon, M.A. (2015) . Electroanalytical determinations of luteolin. Luteolin: Natural Occurrences, Therapeutic Applications and Health Effects, 73-100.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p73_Tesio [ ]
---------- CHICAGO ----------
Tesio, A., Robledo, S.N., Granero, A.M., Fernández, H., Zon, M.A. "Electroanalytical determinations of luteolin" . Luteolin: Natural Occurrences, Therapeutic Applications and Health Effects (2015) : 73-100.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p73_Tesio [ ]
---------- MLA ----------
Tesio, A., Robledo, S.N., Granero, A.M., Fernández, H., Zon, M.A. "Electroanalytical determinations of luteolin" . Luteolin: Natural Occurrences, Therapeutic Applications and Health Effects, 2015, pp. 73-100.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p73_Tesio [ ]
---------- VANCOUVER ----------
Tesio, A., Robledo, S.N., Granero, A.M., Fernández, H., Zon, M.A. Electroanalytical determinations of luteolin. Luteolin: Nat. Occur., Ther. Appl. and Health Eff. 2015:73-100.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p73_Tesio [ ]