Parte de libro

Estamos trabajando para incorporar este artículo al repositorio

Abstract:

Bioglasses are key biomaterials with increasing potential applications, beyond those well accepted ones, mainly related to bone replacements or biocompatible coatings of artificial implants. In addition to the numerous strictly inorganic formulations developed in the past, an advanced generation of these phases, wisely combined with functional biopolymers is currently developed. These new hybrid materials are aimed to enhance cell adhesion, proliferation, differentiation and organization in a normal tissue configuration, while the whole biomaterial is biodegraded at an adequate rate. The success of this combination in the form of a synergic heterogeneous functional material is strongly constrained by the bioglass texture; the structural control at different scale levels, ranging from the nano to the macro scale, is mandatory. In this chapter, we describe and discuss the concepts, trends and advances related to the preparation of highly textured bioglasses and the subsequent combination with biopolymers, as advanced biocomposites for tissue engineering. © 2017 Nova Science Publishers, Inc.

Registro:

Documento: Parte de libro
Título:Advanced bioglasses and their biopolymer-containing hybrid forms
Autor:Aráoz, B.; Jobbágy, M.
Filiación:Lab3Bio, Escuela de Ciencia y Tecnología, Universidad de San Martín, Campus Miguelete, 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
INQUIMAE-CONICET-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
Palabras clave:Biocompatibility; Biomaterials; Biomolecules; Biopolymers; Cell adhesion; Functional materials; Implants (surgical); Structural dynamics; Tissue; Tissue engineering; Artificial implants; Bio-composites; Biocompatible coatings; Bone replacement; Different scale levels; Heterogeneous functional materials; Normal tissue; Structural control; Hybrid materials
Año:2016
Página de inicio:37
Página de fin:54
Título revista:Bioglass: Properties, Functions and Applications
Título revista abreviado:Bioglass: Properties, Functions and Applications
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p37_Araoz

Referencias:

  • Arcos, D., López-Noriega, A., Ruiz-Hernández, E.E., Terasaki, O., Vallet-Regí, M., Ordered Mesoporous Microspheres for Bone Grafting and Drug Delivery (2009) Chemistry of Materials, 21 (6), pp. 1000-1009
  • Arcos, D., Greenspan, D.C., Vallet-Regí, M., Influence of the Stabilization Temperature on Textural and Structural Features and Ion Release in SiO2-CaO-P2O5 Sol-Gel Glasses (2002) Chemistry of Materials, 14 (4), pp. 1515-1522
  • Arcos, D., Vallet-Regí, M., Sol-Gel Silica-Based Biomaterials and Bone Tissue Regeneration (2010) Acta Biomaterialia, 6 (8), pp. 2874-2888
  • Barradas, A.M.C., Groen, H.A.M., Fernandes, N., Chai, Y.C., Schrooten, J., Van De Peppel, J., Van Leeuwen, J.P.T.M., de Boer, J., A Calcium-Induced Signaling Cascade Leading to Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stromal Cells (2012) Biomaterials, 33 (11), pp. 3205-3215
  • Boccaccini, A.R., Chen, Q., Lefebvre, L., Gremillard, L., Chevalier, J., Sintering, Crystallisation and Biodegradation Behaviour of Bioglass(R)-Derived Glass-Ceramics (2007) Faraday Discussions, 136, pp. 27-44
  • Boccaccini, A.R., Erol, M., Stark, W.J., Mohn, D., Hong, Z., Mano, J.F., Polymer/bioactive Glass Nanocomposites for Biomedical Applications: A Review (2010) Composites Science and Technology, 70 (13), pp. 1764-1776
  • Bonartsev, A.P., Boskhomodgiev, A.P., Iordanskii, A.L., Bonartseva, G.A., Rebrov, A.V., Makhina, T.K., Myshkina, V.L., Hydrolytic Degradation of Poly(3-Hydroxybutyrate), Polylactide and Their Derivatives: Kinetics, Crystallinity, and Surface Morphology (2012) Molecular Crystals and Liquid Crystals, 556 (1), pp. 288-300
  • Bonfield, W., Grynpas, M.D., Tully, A.E., Bowman, J., Abram, J., Hydroxyapatite Reinforced Polyethylene - a Mechanically Compatible Implant Material for Bone Replacement (1981) Biomaterials, 2 (3), pp. 185-186
  • Bordoni, A.V., Lombardo, M.V., Regazzoni, A.E., Soler-Illia, G.J.A., Wolosiuk, A., Simple Thiol-Ene Click Chemistry Modification of SBA-15 Silica Pores with Carboxylic Acids (2015) Journal of Colloid and Interface Science, 450, pp. 316-324. , July
  • Bretcanu, O., Samaille, C., Boccaccini, A.R., Simple Methods to Fabricate Bioglass®-Derived Glass--Ceramic Scaffolds Exhibiting Porosity Gradient (2008) Journal of Materials Science, 43 (12), pp. 4127-4134
  • Chen, G., Wu, Q., The Application of Polyhydroxyalkanoates as Tissue Engineering Materials (2005) Biomaterials, 26 (33), pp. 6565-6578
  • Chen, Q.Z., Thompson, I.D., Boccaccini, A.R., 45S5 Bioglass-Derived Glass-Ceramic Scaffolds for Bone Tissue Engineering (2006) Biomaterials, 27 (11), pp. 2414-2425
  • Colilla, M., Salinas, A.J., Vallet-Regí, M., Amino-Polysiloxane Hybrid Materials for Bone Reconstruction (2006) Chemistry of Materials, 18 (24), pp. 5676-5683
  • Duran, A., Conde, A., Gomez Coedo, A., Dorado, T., Garcia, C., Cere, S., Sol-Gel Coatings for Protection and Bioactivation of Metals Used in Orthopaedic Devices (2004) Journal of Materials Chemistry, 14 (14), pp. 2282-2290
  • Eqtesadi, S., Motealleh, A., Miranda, P., Lemos, A., Rebelo, A., Ferreira, J.M.F., A Simple Recipe for Direct Writing Complex 45S5 Bioglass® 3D Scaffolds (2013) Materials Letters, 93, pp. 68-71
  • Fan, T., Chow, S., Zhang, D., Biomorphic Mineralization: From Biology to Materials (2009) Progress in Materials Science, 54 (5), pp. 542-659
  • Gómez-Barrena, E., Rosset, P., Lozano, D., Stanovici, J., Ermthaller, C., Gerbhard, F., Bone Fracture Healing: Cell Therapy in Delayed Unions and Nonunions (2015) Bone, 70, pp. 93-101
  • Gomez-Vega, J.M., Hozumi, A., Saiz, E., Tomsia, A.P., Sugimura, H., Takai, O., Bioactive Glass-mesoporous Silica Coatings on Ti6Al4V through Enameling and Triblock-Copolymer-Templated Sol-Gel Processing (2001) Journal of Biomedical Materials Research, 56 (3), pp. 382-389
  • González, B., Colilla, M., Vallet-Regí, M., Time-Delayed Release of Bioencapsulates: A Novel Controlled Delivery Concept for Bone Implant Technologies (2008) Chemistry of Materials, 20 (15), pp. 4826-4834
  • Hall, S.R., Walsh, D., Green, D., Oreffo, R., Mann, S., A Novel Route to Highly Porous Bioactive Silica Gels (2003) Journal of Materials Chemistry, 13 (2), pp. 186-190
  • Handel, M., Hammer, T.R., Nooeaid, P., Boccaccini, A.R., Hoefer, D., 45S5-Bioglass((R))-Based 3D-Scaffolds Seeded with Human Adipose Tissue-Derived Stem Cells Induce In Vivo Vascularization in the CAM Angiogenesis Assay (2013) Tissue Engineering. Part A, 19 (23-24), pp. 2703-2712
  • Hayrapetyan, A., Jansen, J.A., Van Den Beucken, J.J.J.P., Signaling Pathways Involved in Osteogenesis and Their Application for Bone Regenerative Medicine (2014) Tissue Engineering Part B: Reviews, 21 (1), pp. 75-87
  • Hench, L.L., Bioceramics (1998) Journal of the American Ceramic Society, 81 (7), pp. 1705-1728
  • Hench, L.L., The Story of Bioglass® (2006) Journal of Materials Science: Materials in Medicine, 17 (11), pp. 967-978
  • Hench, L.L., The Future of Bioactive Ceramics (2015) Journal of Materials Science: Materials in Medicine, 26 (2), pp. 1-4
  • Hench, L.L., Polak, J.M., Third-Generation Biomedical Materials (2002) Science, 295 (5557), pp. 1014-1017
  • Hong, Y., Chen, X., Jing, X., Fan, H., Guo, B., Gu, Z., Zhang, X., Preparation, Bioactivity, and Drug Release of Hierarchical Nanoporous Bioactive Glass Ultrathin Fibers (2010) Advanced Materials, 22 (6), pp. 754-758
  • Hoppe, A., Güldal, N.S., Boccaccini, A.R., A Review of the Biological Response to Ionic Dissolution Products from Bioactive Glasses and Glass-Ceramics (2011) Biomaterials, 32 (11), pp. 2757-2774
  • Ji, L., Si, Y., Li, A., Wang, W., Qiu, D., Zhu, A., Progress of Three-Dimensional Macroporous Bioactive Glass for Bone Regeneration (2012) Frontiers of Chemical Science and Engineering, 6 (4), pp. 470-483
  • Jones, J.R., Review of Bioactive Glass: From Hench to Hybrids (2013) Acta Biomaterialia, 9 (1), pp. 4457-4486
  • Jones, J.R., Ehrenfried, L.M., Hench, L.L., Optimising Bioactive Glass Scaffolds for Bone Tissue Engineering (2006) Biomaterials, 27 (7), pp. 964-973
  • Kang, H., Lee, S.J., Ko, I.K., Kengla, C., Yoo, J.J., Atala, A., A 3D Bioprinting System to Produce Human-Scale Tissue Constructs with Structural Integrity (2016) Nature Biotechnology
  • Kim, H.-W., Kim, H.-E., Knowles, J.C., Production and Potential of Bioactive Glass Nanofibers as a Next-Generation Biomaterial (2006) Advanced Functional Materials, 16 (12), pp. 1529-1535
  • Kolb, H.C., Finn, M.G., Sharpless, K.B., Click Chemistry: Diverse Chemical Function from a Few Good Reactions (2001) Angewandte Chemie International Edition, 40 (11), pp. 2004-2021
  • Lee, J., Cuddihy, M.J., Kotov, N.A., Three-Dimensional Cell Culture Matrices: State of the Art (2008) Tissue Engineering Part B: Reviews, 14 (1), pp. 61-86
  • Lei, B., Shin, K.-H., Moon, Y.-W., Noh, D.-Y., Koh, Y.-H., Jin, J., Kim, H.-E., Synthesis and Bioactivity of Sol-Gel Derived Porous, Bioactive Glass Microspheres Using Chitosan as Novel Biomolecular Template (2012) Journal of the American Ceramic Society, 95 (1), pp. 30-33
  • Li, H., Du, R., Chang, J., Fabrication, Characterization, and In Vitro Degradation of Composite Scaffolds Based on PHBV and Bioactive Glass (2005) Journal of Biomaterials Applications, 20 (2), pp. 137-155
  • Li, W., Nooeaid, P., Roether, J.A., Schubert, D.W., Boccaccini, A.R., Preparation and Characterization of Vancomycin Releasing PHBV Coated 45S5 Bioglass®-Based Glass-ceramic Scaffolds for Bone Tissue Engineering (2014) Journal of the European Ceramic Society, 34 (2), pp. 505-514
  • López-Noriega, A., Arcos, D., Izquierdo-Barba, I., Sakamoto, Y., Terasaki, O., Vallet-Regí, M., Ordered Mesoporous Bioactive Glasses for Bone Tissue Regeneration (2006) Chemistry of Materials, 18 (13), pp. 3137-3144
  • Luo, H., Ji, D., Li, W., Xiao, J., Li, C., Xiong, W., Zhu, Y., Wan, Y., Constructing a Highly Bioactive 3D Nanofibrous Bioglass Scaffold via Bacterial Cellulose-Templated Sol-Gel Approach (2016) Materials Chemistry and Physics, 176, pp. 1-5
  • Manavitehrani, I., Fathi, A., Badr, H., Daly, S., Shirazi, A.N., Dehghani, F., Biomedical Applications of Biodegradable Polyesters (2016) Polymers, 8 (20), pp. 1-32
  • Miguez-Pacheco, V., Hench, L.L., Boccaccini, A.R., Bioactive Glasses beyond Bone and Teeth: Emerging Applications in Contact with Soft Tissues (2015) Acta Biomaterialia, 13, pp. 1-15
  • Minaberry, Y., Jobbágy, M., Macroporous Bioglass Scaffolds Prepared by Coupling Sol-Gel with Freeze Drying (2011) Chemistry of Materials, 23 (9), pp. 2327-2332
  • Misra, S.K., Mohn, D., Brunner, T.J., Stark, W.J., Philip, S.E., Roy, I., Salih, V., Boccaccini, A.R., Comparison of Nanoscale and Microscale Bioactive Glass on the Properties of P(3HB)/ Bioglass Composites (2008) Biomaterials, 29 (12), pp. 1750-1761
  • Misra, S.K., Nazhat, S.N., Valappil, S.P., Moshrefi-Torbati, M., Wood, R.J.K., Roy, I., Boccaccini, A.R., Fabrication and Characterization of Biodegradable Poly(3-Hydroxybutyrate) Composite Containing Bioglass (2007) Biomacromolecules, 8 (7), pp. 2112-2119
  • Misra, S.K., Philip, S.E., Chrzanowski, W., Nazhat, S.N., Roy, I., Knowles, J.C., Salih, V., Boccaccini, A.R., Incorporation of Vitamin E in poly(3hydroxybutyrate)/Bioglass Composite Films: Effect on Surface Properties and Cell Attachment (2009) Journal of The Royal Society Interface, 6 (33), pp. 401-409. , http://rsif.royalsocietypublishing.org/content/6/33/401.abstract
  • Moses, J.E., Moorhouse, A.D., The Growing Applications of Click Chemistry (2007) Chemical Society Reviews, 36 (8), pp. 1249-1262
  • Onna, D., Minaberry, Y., Jobbagy, M., Hierarchical Bioglass Scaffolds: Introducing The ‘Milky Way’ for Templated Bioceramics (2015) Journal of Materials Chemistry B, 3 (15), pp. 2971-2977
  • Ortega, I., Jobbágy, M., Ferrer, M.L., del Monte, F., Urease Functionalized Silica: A Biohybrid Substrate To Drive Self-Mineralization (2008) Chemistry of Materials, 20 (24), pp. 7368-7370
  • Ostomel, T.A., Shi, Q., Tsung, C.-K., Liang, H., Stucky, G.D., Spherical Bioactive Glass with Enhanced Rates of Hydroxyapatite Deposition and Hemostatic Activity (2006) Small, 2 (11), pp. 1261-1265
  • Paşcu, E.I., Stokes, J., McGuinness, G.B., Electrospun Composites of PHBV, Silk Fibroin and Nano-Hydroxyapatite for Bone Tissue Engineering (2013) Materials Science and Engineering: C, 33 (8), pp. 4905-4916
  • Pearce, E.M., Howell, B.A., Pethrick, R.A., Zaikov, G.E., (2015) Physical Chemistry Research for Engineering and Applied Sciences, Volume One: Principles and Technological Implications, , https://www.crcpress.com, Edited by Gennady E. Zaikov Eli M. Pearce, Bob A. Howell, Richard A. Pethrick. Apple Academic Press
  • Qian, J., Kang, Y., Wei, Z., Zhang, W., Fabrication and Characterization of Biomorphic 45S5 Bioglass Scaffold from Sugarcane (2009) Materials Science and Engineering: C, 29 (4), pp. 1361-1364
  • Qu, X.-H., Wu, Q., Zhang, K.-Y., Chen, G.Q., In Vivo Studies of poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate) Based Polymers: Biodegradation and Tissue Reactions (2006) Biomaterials, 27 (19), pp. 3540-3548
  • Rahaman, M.N., Day, D.E., Bal, B.S., Fu, Q., Jung, S.B., Bonewald, L.F., Tomsia, A.P., Bioactive Glass in Tissue Engineering (2011) Acta Biomaterialia, 7 (6), pp. 2355-2373
  • Rezwan, K., Chen, Q.Z., Blaker, J.J., Boccaccini, A.R., Biodegradable and Bioactive Porous Polymer/inorganic Composite Scaffolds for Bone Tissue Engineering (2006) Biomaterials, 27 (18), pp. 3413-3431
  • Roether, J.A., Boccaccini, A.R., Hench, L.L., Maquet, V., Gautier, S., Jérôme, R., Development and In Vitro Characterisation of Novel Bioresorbable and Bioactive Composite Materials Based on Polylactide Foams and Bioglass® for Tissue Engineering Applications (2002) Biomaterials, 23 (18), pp. 3871-3878
  • Román, J.S., Padilla, S., Vallet-Regí, M., Sol-Gel Glasses as Precursors of Bioactive Glass Ceramics (2003) Chemistry of Materials, 15 (3), pp. 798-806
  • Shi, Q.H., Wang, J.F., Zhang, J.P., Fan, J., Stucky, G.D., Rapid-Setting, Mesoporous, Bioactive Glass Cements That Induce Accelerated In Vitro Apatite Formation (2006) Advanced Materials, 18 (8), pp. 1038-1042
  • Tang, W., Lin, D., Yu, Y., Niu, H., Guo, H., Yuan, Y., Liu, C., Bioinspired Trimodal Macro/micro/nano-Porous Scaffolds Loading rhBMP-2 for Complete Regeneration of Critical Size Bone Defect (2016) Acta Biomaterialia, 32, pp. 309-323
  • Tuzlakoglu, K., Reis, R.L., Formation of Bone-like Apatite Layer on Chitosan Fiber Mesh Scaffolds by a Biomimetic Spraying Process (2007) Journal of Materials Science: Materials in Medicine, 18 (7), pp. 1279-1286
  • Vallet-Regí, M., Manzano, M., Gonzalez-Calbet, J.M., Okunishi, E., Evidence of Drug Confinement into Silica Mesoporous Matrices by STEM Spherical Aberration Corrected Microscopy (2010) Chemical Communications, 46 (17), pp. 2956-2958
  • Xie, B., Parkhill, R.L., Warren, W.L., Smay, J.E., Direct Writing of Three-Dimensional Polymer Scaffolds Using Colloidal Gels (2006) Advanced Functional Materials, 16 (13), pp. 1685-1693
  • Yan, X., Huang, X., Yu, C., Deng, H., Wang, Y., Zhang, Z., Qiao, S., Zhao, D., The in-Vitro Bioactivity of Mesoporous Bioactive Glasses (2006) Biomaterials, 27 (18), pp. 3396-3403
  • Yan, X., Yu, C., Zhou, X., Tang, J., Zhao, D., Highly Ordered Mesoporous Bioactive Glasses with Superior In Vitro Bone-Forming Bioactivities (2004) Angewandte Chemie, 43 (44), pp. 5980-5984
  • Yun, H.-S., Kim, S.-E., Hyeon, Y.-E., Design and Preparation of Bioactive Glasses with Hierarchical Pore Networks (2007) Chemical Communications, 21, pp. 2139-2141
  • Yun, H.-S., Kim, S.-E., Hyun, Y.-T., Preparation of Bioactive Glass Ceramic Beads with Hierarchical Pore Structure Using Polymer Self-Assembly Technique (2009) Materials Chemistry and Physics, 115 (2-3), pp. 670-676
  • Yun, H.-S., Park, J.-W., Kim, S.-H., Kim, Y.-J., Jang, J.-H., Effect of the Pore Structure of Bioactive Glass Balls on Biocompatibility In Vitro and In Vivo (2011) Acta Biomaterialia, 7 (6), pp. 2651-2660
  • Zhang, K., Washburn, N.R., Simon, C.G., Cytotoxicity of Three-Dimensionally Ordered Macroporous Sol-Gel Bioactive Glass (3DOMBG) (2005) Biomaterials, 26 (22), pp. 4532-4539
  • Zheng, K., Bortuzzo, J.A., Liu, Y., Li, W., Pischetsrieder, M., Roether, J., Lu, M., Boccaccini, A.R., Bio-Templated Bioactive Glass Particles with Hierarchical Macro-nano Porous Structure and Drug Delivery Capability (2015) Colloids and Surfaces B: Biointerfaces, 135, pp. 825-832

Citas:

---------- APA ----------
Aráoz, B. & Jobbágy, M. (2016) . Advanced bioglasses and their biopolymer-containing hybrid forms. Bioglass: Properties, Functions and Applications, 37-54.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p37_Araoz [ ]
---------- CHICAGO ----------
Aráoz, B., Jobbágy, M. "Advanced bioglasses and their biopolymer-containing hybrid forms" . Bioglass: Properties, Functions and Applications (2016) : 37-54.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p37_Araoz [ ]
---------- MLA ----------
Aráoz, B., Jobbágy, M. "Advanced bioglasses and their biopolymer-containing hybrid forms" . Bioglass: Properties, Functions and Applications, 2016, pp. 37-54.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p37_Araoz [ ]
---------- VANCOUVER ----------
Aráoz, B., Jobbágy, M. Advanced bioglasses and their biopolymer-containing hybrid forms. Bioglass: Properties, Functions and Applications. 2016:37-54.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p37_Araoz [ ]