Parte de libro

Estamos trabajando para incorporar este artículo al repositorio

Abstract:

Sphingolipids are involved in a wide range of physiological and pathological processes none only as signaling molecules but also as key structural components regulating the lateral organization of cellular membranes. The preferential interaction of these biomolecules with cholesterol support the actual theory related with membrane heterogeneity in vivo, the raft theory. Rafts are believed to be highlydynamic and small domains enriched in sphingolipids, cholesterol and certain proteins present in the membrane of cells. The idea of these domains compartmentalizing cellular processes is a central hypothesis in biomedical research from immunology, virology, neurobiology to cancer. The use of microscopy to study lateral heterogeneity in biological membranes was developed during the nineties with the use of artificial models systems such as giant unillamelar vesicles and supported-lipid bilayers. The combination of confocal and two-photon microscopy techniques with fluorescent and solvatochromic probes like Laurdan enabled the acquisition of spatially-resolved information about the fluidity and/or order of artificial bilayers showing phase segregation. The development of new techniques combining Laurdan imaging with fluorescence fluctuation spectroscopy allowed the detection of highlypacked microdomains in natural cell membranes. In this article we review these exciting new approaches that open a window to further characterize these sphingolipid-enriched domains in cell membranes during both physiological and pathological processes. © 2015 by Nova Science Publishers, Inc. All rights reserved.

Registro:

Documento: Parte de libro
Título:New fluorescence microscopy approaches to explore the influence of sphingolipids on lateral organization of biomembranes: From artificial systems to cellular membranes
Autor:Traian, M.M.D.; Sánchez, S.A.; Levi, V.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
Año:2015
Página de inicio:1
Página de fin:19
Título revista:Sphingomyelin and Ceramides: Occurrence, Biosynthesis and Role in Disease
Título revista abreviado:Sphingomyelin and Ceramides: Occur., Biosynth. and Role in Dis.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p1_Traian

Referencias:

  • Goni, F.M., The basic structure and dynamics of cell membranes: an update of the Singer-Nicolson model. (2014) Biochim Biophys Acta, 1838, pp. 1467-1476
  • Singer, S.J., Nicolson, G.L., The fluid mosaic model of the structure of cell membranes. (1972) Science, 175, pp. 720-731
  • Zech, T., Ejsing, C.S., Gaus, K., de Wet, B., Shevchenko, A., Simons, K., Harder, T., Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. (2009) EMBO J, 28, pp. 466-476
  • Miguel, L., Owen, D.M., Lim, C., Liebig, C., Evans, J., Magee, A.I., Jury, E.C., Primary Human CD4+ T Cells Have Diverse Levels of Membrane Lipid Order That Correlate with Their Function. (2011) J Immunol, 186, pp. 3505-3516
  • Klemm, R.W., Ejsing, C.S., Surma, M.A., Kaiser, H.J., Gerl, M.J., Sampaio, J.L., de Robillard, Q., Simons, K., Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. (2009) J Cell Biol, 185, pp. 601-612
  • Schuck, S., Simons, K., Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. (2004) J Cell Sci, 117, pp. 5955-5964
  • Brügger, B., Glass, B., Haberkant, P., Leibrecht, I., Wieland, F.T., Kräusslich, H.G., The HIV lipidome: A raft with an unusual composition. (2006) Proc Natl Acad Sci U S A, 103, pp. 2641-2646
  • Saad, J.S., Miller, J., Tai, J., Kim, A., Ghanam, R.H., Summers, M.F., Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. (2006) Proc Natl Acad Sci U S A, 103, pp. 1136-1136
  • Takeda, M., Leser, G.P., Russell, C.J., Lamb, R.A., Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. (2003) Proceedings of the National Academy of Sciences, 100, pp. 1461-1461
  • Simons, K., Ikonen, E., Functional rafts in cell membranes. (1997) Nature, 387, pp. 569-572
  • Jacobson, K., Mouritsen, O.G., Anderson, R.G., Lipid rafts: at a crossroad between cell biology and physics. (2007) Nat Cell Biol, 9, pp. 7-14
  • Lingwood, D., Kaiser, H.J., Levental, I., Simons, K., Lipid rafts as functional heterogeneity in cell membranes. (2009) Biochem Soc Trans, 37, pp. 955-960
  • Lasic, D.D., The mechanism of vesicle formation. (1988) Biochem. J., 256, p. 1
  • Bangham, A.D., Standish, M.M., Watkins, J.C., Diffusion of univalent ions across the lamellae of swollen phospholipids. (1965) Journal of Molecular Biology, 13, pp. 238-252. , IN226-IN227
  • Goins, B., Freier, E., Lipid phase separations induced by the association of cholera toxin to phospholipid membranes containing ganglioside GM1. (1985) Biochemistry, 24, pp. 1791-1797
  • Keller, M., Kerth, A., Blume, A., Thermodynamics of interaction of octyl glucoside with phosphatidylcholine vesicles: partitioning and solubilization as studied by high sensitivity titration calorimetry. (1997) Biomembranes, 1326, pp. 178-192. , Biochimica et Biophysica Acta (BBA)
  • Bar, L.K., Barenholz, Y., Thompson, T.E., Effect of Sphingomyelin Composition on the Phase Structure of Phosphatidylcholine-Sphingomyelin Bilayers. (1997) Biochemistry, 36, pp. 2507-2516
  • Ge, M., Field, K.A., Aneja, R., Holowka, D., Baird, B., Freed, J.H., Electron Spin Resonance Characterization of Liquid Ordered Phase of Detergent-Resistant Membranes from RBL-2H3 Cells. (1999) Biophysical Journal, 77, pp. 925-933
  • Sanderson, J.M., Resolving the kinetics of lipid, protein and peptide diffusion in membranes. (2012) Mol Membr Biol, 29, pp. 118-143
  • Johnson, S.J., Bayerl, T.M., McDermott, D.C., Adam, G.W., Rennie, A.R., Thomas, R.K., Sackmann, E., Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. (1991) Biophys J, 59, pp. 289-294
  • Wacklin, H.P., Composition and asymmetry in supported membranes formed by vesicle fusion. (2011) Langmuir, 27, pp. 7698-7707
  • Walde, P., Cosentino, K., Engel, H., Stano, P., Giant vesicles: preparations and applications. (2010) Chembiochem, 11, pp. 848-865
  • Bagatolli, L.A., Gratton, E., Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. (1999) Biophysical Journal, 77, pp. 2090-2101
  • Angelova, M.I., Dimitrov, D.S., Liposome electroformation. (1986) Faraday Discussions of the Chemical Society, 81, pp. 303-311
  • Angelova, M.I., Soleau, S., Meleard, P., Faucon, J.F., Bothorel, P., Preparation of giant vesicles by external fields. (1992) Prog. Colloid Polym Sci., 89, pp. 127-131. , Kinetics and application
  • Sánchez, S.A., Tricerri, M.A., Gratton, E., Interaction of High Density Lipoprotein particles with membranes containing cholesterol. (2007) J. Lipid Res., 48, pp. 1689-1700
  • Montes, L.R., Alonso, A., Goni, F.M., Bagatolli, L.A., Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. (2007) Biophys J, 93, pp. 3548-3554
  • Dietrich, C., Bagatolli, L.A., Volovyk, Z.N., Thompson, N.L., Levi, M., Jacobson, K., Gratton, E., Lipid rafts reconstituted in model membranes. (2001) Biophys J, 80, pp. 1417-1428
  • Klymchenko, A.S., Kreder, R., Fluorescent probes for lipid rafts: from model membranes to living cells. (2014) Chem Biol, 21, pp. 97-113
  • Weber, G., Farris, F.J., Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino) naphthalene. (1979) Biochemistry, 18, pp. 3075-3078
  • Rowe, B.A., Neal, S.L., Photokinetic analysis of PRODAN and LAURDAN in large unilamellar vesicles from multivariate frequency-domain fluorescence. (2006) J Phys Chem B, 110, pp. 1502-1502
  • Parasassi, T., Gratton, E., Membrane lipid domains and dynamics as detected by Laurdan fluorescence. (1995) Journal of Fluorescence, 5, pp. 59-69
  • Hirsch-Lerner, D., Barenholz, Y., Hydration of lipoplexes commonly used in gene delivery: follow-up by laurdan fluorescence changes and quantification by differential scanning calorimetry. (1999) Biomembranes, 1461, pp. 47-57. , Biochimica et Biophysica Acta (BBA)
  • Mukherjee, S., Chattopadhyay, A., Monitoring the organization and dynamics of bovine hippocampal membranes utilizing Laurdan generalized polarization. (2005) -Biomembranes, 1714, pp. 43-55. , Biochimica et Biophysica Acta (BBA)
  • Harris, F.M., Best, K.B., Bell, J.D., Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. (2002) Biomembranes, 1565, pp. 123-128. , Biochimica et Biophysica Acta (BBA)
  • Parasassi, T., De Stasio, G., Ravagnan, G., Rusch, R.M., Gratton, E., Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. (1991) Biophysical Journal, 60, pp. 179-189
  • Yu, W., So, P.T., French, T., Gratton, E., Fluorescence generalized polarization of cell membranes: a two-photon scanning microscopy approach. (1996) Biophysical Journal, 70, pp. 626-636
  • Bagatolli, L.A., Gratton, E., Two Photon Fluorescence Microscopy of Coexisting Lipid Domains in Giant Unilamellar Vesicles of Binary Phospholipid Mixtures. (2000) Biophysical Journal, 78, pp. 290-305
  • Klose, C., Ejsing, C.S., García-Sáez, A.J., Kaiser, H.J., Sampaio, J.L., Surma, M.A., Shevchenko, A., Simons, K., Yeast Lipids Can Phase-separate into Micrometer-scale Membrane Domains. (2010) Journal of Biological Chemistry, 285, pp. 3022-3023
  • Gaus, K., Gratton, E., Kable, E.P.W., Jones, A.S., Gelissen, I., Kritharides, L., Jessup, W., Visualizing lipid structure and raft domains in living cells with two-photon microscopy. (2003) Proceedings of the National Academy of Sciences, 100, pp. 1555-1555
  • Bagatolli, L.A., Sanchez, S.A., Hazlett, T., Gratton, E., Giant vesicles, Laurdan, and two-photon fluorescence microscopy: evidence of lipid lateral separation in bilayers. (2003) Methods Enzymol, 360, pp. 481-500
  • Arnulphi, C., Sánchez, S.A., Tricerri, M.A., Gratton, E., Jonas, A., Interaction of human apolipoprotein A-I with model membranes exhibiting lipid domains. (2005) Biophys. J., 89, pp. 285-295
  • Dodes Traian, M.M., Flecha, F.L.G., Levi, V., Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope. (2012) Journal of Lipid Research, 53, pp. 609-616
  • Henning, M.F., Sánchez, S.A., Bakás, L., Visualization and analysis of lipopolysaccharide distribution in binary phospholipid bilayers. (2009) Biochem. Biophys. Res. Commun., 383, pp. 22-26
  • Toro, C.S.A.S., Zanocco, A., Lemp, E., Gratton, E., Gunther, G., Solubilization of lipid bilayers by myristyl sucrose ester: effect of cholesterol and phospholipid head group size. (2009) Chem. Phys. Lipids., 157, pp. 104-112
  • Nicolini, C., Baranski, J., Schlummer, S., Palomo, J., Lumbierres-Burgues, M., Kahms, M., Kuhlmann, J., Winter, R., Visualizing association of N-ras in lipid microdomains: influence of domain structure and interfacial adsorption. (2006) J. Am. Chem. Soc., 128, pp. 192-201
  • Jaureguiberry, M.S., Tricerri, M.A., Sanchez, S.A., Garda, H.A., Finarelli, G.S., Gonzalez, M.C., Rimoldi, O.J., Membrane organization and regulation of cellular Cholesterol homeostasis. (2010) J. Membr. Biol., 234, pp. 183-194
  • Sánchez, M.A.T., Gratton, E., Detecting cholesterol changes in lipid bilayers. (2008) Bioworld Europe, 1, pp. 8-11
  • Sanchez, S.A., Gunther, G., Tricerri, M.A., Gratton, E., Methyl-β-cyclodextrins preferentially remove cholesterol from the liquid disordered phase in giant unilamellar vesicles. (2011) J Membr Biol, 24, pp. 1-10
  • Fidorra, M.A.G., Ipsen, J., Hartel, S., Bagatolli, L.A., Lipid domains in giant unilamellar vesicles and their correspondence with equilibrium thermodynamic phases: A quantitative fluorescence microscopy imaging approach. (2009) Biochim. Biophys. Acta., 1788, pp. 2142-2149
  • Husen, P.M.F., Hartel, S., Bagatolli, L.A., Ipsen, J.H., A method for analysis of lipid vesicle domain structure from confocal image data (2012) Eur. Biophys. J., 41, pp. 161-175
  • Husen, P., Arriaga, L.R., Monroy, F., Ipsen, J.H., Bagatolli, L.A., Morphometric Image Analysis of Giant Vesicles: A New Tool for Quantitative Thermodynamics Studies of Phase Separation in Lipid Membranes. (2012) Biophysical Journal, 103, pp. 2304-2310
  • Veatch, S.L., Keller, S.L., A closer look at the canonical "raft mixture' in model membrane studies (2003) Biophysical Journal, 84, p. 725
  • Jin, L., Millard, A.C., Wuskell, J.P., Dong, X., Wu, D., Clark, H.A., Loew, L.M., Characterization and Application of a New Optical Probe for Membrane Lipid Domains. (2006) Biophysical Journal, 90, pp. 2563-2575
  • Kim, H.M., Choo, H.J., Jung, S.Y., Ko, Y.G., Park, W.H., Jeon, S.J., Kim, C.H., Cho, B.R., (2007) A two-photon fluorescent probe for lipid raft imaging, 8, pp. 553-559. , C-Laurdan. Chembiochem
  • Baumgart, T., Hunt, G., Farkas, E.R., Webb, W.W., Feigenson, G.W., Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. (2007) Biochim Biophys Acta, 1768, pp. 2182-2194
  • Brown, D.A., London, E., Structure and function of sphingolipid-and cholesterol-rich membrane rafts. (2000) J Biol Chem, 275, pp. 1722-1722
  • Veatch, S.L., Soubias, O., Keller, S.L., Gawrisch, K., Critical fluctuations in domain-forming lipid mixtures. (2007) Proceedings of the National Academy of Sciences, 104, pp. 1765-1765
  • Sánchez, S.A., Tricerri, M.A., Ossato, G., Gratton, E., Lipid packing determines protein-membrane interactions: Challenges for apolipoprotein A-I and high density lipoproteins. (2010) Biochimica et Biophysica Acta, 1798, pp. 1399-1408
  • Sanchez, S.A., Bagatolli, L.A., Gratton, E., Hazlett, T.L., A Two-Photon View of an Enzyme at Work: Crotalus atrox Venom PLA2 Interaction with Single-Lipid and Mixed-Lipid Giant Unilamellar Vesicles (2002) Biophys. J., 82, pp. 2232-2243
  • Jaureguiberry, M.S.T.M., Sanchez, S.A., Finarelli, G.S., Montanaro, M.A., Prieto, E.D., Rimoldi, O.J., Role of plasma membrane lipid composition on cellular homeostasis: learning from cell line models expressing fatty acid desaturases. (2014) Acta Biochim Biophys Sin, 46, pp. 273-282. , Shanghai
  • Navarro-Lérida, I.S.P.S., Calvo, M., Rentero, C., Zheng, Y., Enrich, C., Del Pozo, M.A., A palmitoylation switch mechanism regulates Rac1 function and membrane organization (2012) EMBO J., 31, pp. 534-551
  • Wayne, R., Light and Video microscopy. (2009) Elsevier Inc, pp. 35-65. , Amsterdam
  • Celli, A., Beretta, S., Gratton, E., Phase fluctuations on the micron-submicron scale in GUVs composed of a binary lipid mixture. (2008) Biophys. J., 94, pp. 104-116
  • Celli, A., Gratton, E., Dynamics of lipid domain formation: fluctuation analysis. (2010) Biochim Biophys Acta., 1798, pp. 1368-1376
  • Ruan, Q., Cheng, M.A., Levi, M., Gratton, E., Mantulin, W.W., Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS). (2004) Biophys J, 87, pp. 1260-1267
  • Dertinger, T., Pacheco, V.I., von der Hocht, R., Hartmann, I., Gregor, J., Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. (2007) Chemphyschem, 8, pp. 433-443
  • Burkhardt, M., Schwille, P., Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy. (2006) Opt Express, 14, pp. 5013-5020
  • Bacia, K., Kim, S.A., Schwille, P., Fluorescence crosscorrelation spectroscopy in living cells. (2006) Nat Methods, 3, pp. 83-89
  • Hebert, B., Costantino, S., Wiseman, P.W., Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. (2005) Biophys J, 88, pp. 3601-3614
  • Digman, M.A., Brown, C.M., Sengupta, P., Wiseman, P.W., Horwitz, A.R., Gratton, E., Measuring fast dynamics in solutions and cells with a laser scanning microscope. (2005) Biophys J, 89, pp. 1317-1327
  • Hinde, E., Cardarelli, F., Digman, M.A., Gratton, E., In vivo pair correlation analysis of EGFP intranuclear diffusion reveals DNAdependent molecular flow. (2010) Proc Natl Acad Sci U S A, 107, pp. 1656-1656
  • Elson, E.L., Fluorescence correlation spectroscopy: past, present, future. (2011) Biophys J, 101, pp. 2855-2870
  • Chen, Y., Muller, J.D., Ruan, Q., Gratton, E., Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy. (2002) Biophys J, 82, pp. 133-144
  • Chen, Y., Muller, J.D., So, P.T., Gratton, E., The photon counting histogram in fluorescence fluctuation spectroscopy. (1999) Biophys J, 77, pp. 553-567
  • Sánchez, S.A., Tricerri, M.A., Gratton, E., Laurdan generalized polarization fluctuations measures membrane packing microheterogeneity in vivo. (2012) Proc. Natl. Acad. Sci. USA., 109 (19), pp. 7314-7319. , 7314-9, 2012, 109
  • Smith, S.K., Farnbach, A.R., Harris, F.M., Hawes, A.C., Jackson, L.R., Judd, A.M., Vest, R.S., Bell, J.D., Mechanisms by which intracellular calcium induces susceptibility to secretory phospholipase A2 in human erythrocytes. (2001) J Biol Chem, 276, pp. 2273-2274
  • Jaureguiberry, M.S., Tricerri, M.A., Sanchez, S.A., Garda, H.A., Finarelli, G.S., Gonzalez, M.C., Rimoldi, O.J., Membrane organization and regulation of cellular cholesterol homeostasis. (2010) J Membr Biol, 234, pp. 183-194
  • Golfetto, O., Hinde, E., Gratton, E., The Laurdan spectral phasor method to explore membrane micro-heterogeneity and lipid domains in live cells. (2015) Methods Mol Biol, 1232, pp. 273-290
  • Ottavia Golfetto, E.H., Gratton, E., Laurdan Fluorescence Lifetime Discriminates Cholesterol Content from Changes in Fluidity in Living Cell Membranes. (2013) Biophysical J., 104, pp. 1238-1247
  • Gabriele Bonaventura, M.L.B., Golfetto, O., Nourse, J.L., Flanagan, L.A., Gratton, E., Laurdan Monitors Different Lipids Content in Eukaryotic. (2014) Cell Biochem Biophys, 70, pp. 9982-9988. , Membrane During Embryonic Neural Development
  • Owen, D.M., Williamson, D.J., Magenau, A., Gaus, K., Subresolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution. (2012) Nat Commun, 3, p. 1256
  • Owen, D.M., Gaus, K., Imaging lipid domains in cell membranes: the advent of super-resolution fluorescence microscopy. (2013) Front Plant Sci, 4, p. 503
  • Elson, E.L., Brief introduction to fluorescence correlation spectroscopy. (2013) Methods Enzymol, 518, pp. 11-41

Citas:

---------- APA ----------
Traian, M.M.D., Sánchez, S.A. & Levi, V. (2015) . New fluorescence microscopy approaches to explore the influence of sphingolipids on lateral organization of biomembranes: From artificial systems to cellular membranes. Sphingomyelin and Ceramides: Occurrence, Biosynthesis and Role in Disease, 1-19.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p1_Traian [ ]
---------- CHICAGO ----------
Traian, M.M.D., Sánchez, S.A., Levi, V. "New fluorescence microscopy approaches to explore the influence of sphingolipids on lateral organization of biomembranes: From artificial systems to cellular membranes" . Sphingomyelin and Ceramides: Occurrence, Biosynthesis and Role in Disease (2015) : 1-19.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p1_Traian [ ]
---------- MLA ----------
Traian, M.M.D., Sánchez, S.A., Levi, V. "New fluorescence microscopy approaches to explore the influence of sphingolipids on lateral organization of biomembranes: From artificial systems to cellular membranes" . Sphingomyelin and Ceramides: Occurrence, Biosynthesis and Role in Disease, 2015, pp. 1-19.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p1_Traian [ ]
---------- VANCOUVER ----------
Traian, M.M.D., Sánchez, S.A., Levi, V. New fluorescence microscopy approaches to explore the influence of sphingolipids on lateral organization of biomembranes: From artificial systems to cellular membranes. Sphingomyelin and Ceramides: Occur., Biosynth. and Role in Dis. 2015:1-19.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p1_Traian [ ]