Parte de libro

Estamos trabajando para incorporar este artículo al repositorio

Abstract:

Agarans are sulfated galactans biosynthesized by red seaweeds; they are constituted by alternating 3-linked β-D-galactose units and 4-linked α-L-galactose units with different degree of cyclization to give 3,6-anhydro-α-L-galactose. The neutral, completely cyclized agaran is known as agarose and is the major component of the products industrially obtained mainly from seaweeds of the orders Gelidiales, Anhfeltiales, and Gracilariales. Its gelling properties have a wide range of industrial uses. The biological precursor structure of agarose is usually known as porphyran, being found in important amounts in seaweeds of the genus Porphyra (Bangiales). The ideal structure of this galactan is composed of alternating 3-linked β-D-galactose and 4-linked α-Lgalactose 6-sulfate units. The latter residues are cyclized by specific enzymes in the cell wall regulating the physical characteristics of the amorphous matrix. The same reaction, but in the presence of alkali, is used to improve the rheological properties of extracts from different sources with commercial purposes. Besides, water extracts from agarophytes usually comprise not only major amounts of agarose, which is only obtained with hot water or hot water solutions, but also minor quantities of galactans with related structures but with a certain degree of substitution with sulfate ester groups, methyl ethers, pyruvate ketals, D-xylose and/or 4-O-methyl-L-galactose side chains, and different percentages of 3,6-anhydrogalactose, depending on the source and sample work up. These kind of polymers constitute the major sulfated galactans from Ceramiales, whilethose obtained from calcareous seaweeds of the order Corallinales are characterized by important amounts of single stubs of D-xylose, a complex methylation pattern, and by the absence of 3,6-anhydrogalactose units. The presence of substituents, as well as noncyclized units in the backbone, precludes helix formation and gelling in aqueous systems. © 2015 by Nova Science Publishers, Inc. All rights reserved.

Registro:

Documento: Parte de libro
Título:Agarans: Sulfated precursors and derivatives from agarose, and related sulfated GALACTANS
Autor:Ciancia, M.; Matulewicz, M.C.
Filiación:Cátedra de Química de Biomoléculas, Departamento de Biología Aplicada y Alimentos, Universidad de Buenos Aires, Buenos Aires, Argentina
CIHIDECAR (CONICET-UBA), Departamento de Química Orgánica, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
Año:2015
Página de inicio:199
Página de fin:216
Título revista:Sulfated Polysaccharides
Título revista abreviado:Sulfated Polysaccharides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p199_Ciancia

Referencias:

  • Armisen, R., World-wide use and importance of Gracilaria (1995) Journal Applied Phycology, 7, pp. 231-243
  • Lahaye, M., Rochas, C., Chemical structure and physico-chemical properties of agar (1991) Hydrobiologia, 221, pp. 137-148
  • Arnott, S., Fulmer, A., Scott, W.E., Dea, I.C.M., Moorhouse, R., Rees, D.A., The agarose double helix and its function in agarose gel structure (1974) Journal Molecular Biology, 90, pp. 269-284
  • Norton, I.T., Goodall, D.M., Austen, K.R.J., Morris, E.R., Dynamics of molecular organization in agarose sulphate (1986) Biopolymers, 25, pp. 1009-1029
  • Dai, B., Matsukawa, S., Elucidation of gelation mechanism and molecular interactions of agarose in solution by 1H NMR (2013) Carbohydrate Research, 365, pp. 38-45
  • Foord, S.A., Atkins, E.D.T., New X-ray diffraction results from agarose: Extended single helix structures and implications for gelation mechanism (1989) Biopolymers, 28, pp. 1345-1365
  • Jimenez-Barbero, J., Bouffar-Roupe, C., Rochas, C., Pérez, S., Modelling studies of solvent effects on the conformational stability of agarobiose and neoagarobiose and their relationship to agarose (1989) International Journal of Biological Macromolecules, 11, pp. 265-272
  • Guenet, J.M., Brulet, A., Rochas, C., Agarose chain conformation in the sol state (1993) International Journal of Biological Macromolecules, 15, pp. 131-132
  • Murano, E., Chemical structure and quality of agars from Gracilaria (1995) Journal Applied Phycology, 7, pp. 245-254
  • Usov, A.I., Polysaccharides of the red algae (2011) Advances Carbohydrate Chemistry Biochemistry, 65, pp. 115-217
  • Siddhanta, A.K., Goswami, A.M., Shanmugam, M., Mody, K.H., Ramavat, B.K., Mairh, O.P., Sulphated galactams of marine red alga Laurencia spp(Rhodomelacea, Rhodophyta) from the west coast of India. (2002) Indian Journal Marine Sciences, 31, pp. 305-309
  • Canelón, D.J., Ciancia, M., Suárez, A.I., Compagnone, R.S., Matulewicz, M.C., Structure of highly substituted agarans from the red seaweeds Laurencia obtusa and Laurencia filiformis (2014) Carbohydrate Polymers, 101, pp. 705-713
  • Miller, I.J., Falshaw, R., Furneaux, R.H., The chemical structures of polysaccharides from New Zealand members of the Rhodomelaceae (1993) Botanica Marina, 36, pp. 203-208
  • Usov, A.I., Sulfated polysaccharides of red seaweeds. (1993) Hydrobiologia., 260-261, pp. 641-645
  • Ferreira, L.G., Noseda, M.D., Gonçalves, A.G., Ducatti, D.R.B., Fujii, M.T., Duarte, M.E.R., Chemical Structure of the complex pyruvylated and sulfated agaran from the red seaweed Palisada flagellifera (Ceramiales, Rhodophyta) (2012) Carbohydrate Research, 347, pp. 83-94
  • Cardoso, M.A., Noseda, M.D., Fujii, M.T., Zibetti, R.G.M., Duarte, M.E.R., Sulfated xylomannans isolated from red seaweeds Chondrophycus papillosus and Cflagelliferus (Ceramiales) from Brazil. (2007) Carbohydrate Research, 342, pp. 2766-2775
  • Villanueva, R.D., Romero, J.B., Ragasa, A.L.R., Montaño, M.N.E., Agar from the red seaweed, Laurencia flexilis (Ceramiales, Rhodophyta) from northern Philippines (2010) Phycological Research, 58, pp. 151-156
  • Abe, T., Kurihara, A., Kawaguchi, S., Terada, R., Masuda, M., Preliminary report on the molecular phylogeny of the Laurencia complex (Rhodomelaceae) (2006) Coastal Marine Science, 30, pp. 209-213
  • Duarte, M.E.R., Cauduro, J.P., Noseda, D.G., Noseda, M.D., Gonçalves, A.G., Pujol, C.A., Damonte, E.B., Cerezo, A.S., The structure of the agaran sulfate from Acanthophora spicifera (Rhodomelaceae, Ceramiales) and its antiviral activity Relation between structure and antiviral activity in agarans. (2004) Carbohydrate Research, 339, pp. 335-347
  • Noseda, M.D., Tulio, S., Duarte, M.E.R., Polysaccharides from the red seaweed Bostrychia montagnei: chemical characterization (1999) Journal Applied Phycology, 11, pp. 35-40
  • Duarte, M.E.R., Noseda, M.D., Cardoso, M.A., Tulio, S., Cerezo, A.S., The structure of a galactan sulfate from the red seaweed Bostrychia montagnei (2002) Carbohydrate Research, 337, pp. 1137-1144
  • Batey, J.F., Turvey, J.R., The galactan sulphate of the red alga Polysiphonia lanosa (1975) Carbohydrate Research, 43, pp. 133-143
  • Usov, A.I., Ivanova, E.G., Shashkov, A.S., Polysaccharides of algae. XXXIII: Isolation and 13C NMR spectral study of some new gel-forming polysaccharides from Japan Sea red seaweeds. (1983) Botanica Marina., 26, pp. 285-294
  • Usov, A.I., Ivanova, E.G., Polysaccharides of algae (1987) XXXVII. Characterization of hybrid structure of substituted agarose from Polysiphonia morrowii (Rhodophyta, Rhodomelaceae) using β-agarase and 13C NMR spectroscopy. Botanica Marina, 30, pp. 365-370
  • Miller, I.J., Furneaux, R.H., The structural determination of the agaroid polysaccharides from four New Zealand algae in the order Ceramiales by means of 13C NMR spectroscopy (1997) Botanica Marina, 40, pp. 333-339
  • Miller, I.J., Evaluation of the structures of polysaccharides from two New Zealand members of the Rhodomelaceae by 13C NMR spectroscopy (2003) Botanica Marina, 46, pp. 386-391
  • Prado, H.J., Ciancia, M., Matulewicz, M.C., Agarans from the red seaweed Polysiphonia nigrescens (Rhodomelaceae, Ceramiales) (2008) Carbohydrate Research, 343, pp. 711-718
  • Furneaux, R.H., Stevenson, T.T., The xylogalactan sulfate from Chondria macrocarpa (Ceramiales, Rhodophyta). (1990) Hydrobiologia., 204-205, pp. 615-620
  • Miller, I.J., Blunt, J.W., Evaluation of the structure of the polysaccharides from Chondria macrocarpa and Ceramium rubrum as determined by 13C NMR spectroscopy (2002) Botanica Marina, 45, pp. 1-8
  • Miller, I.J., Blunt, J.W., New 13C NMR methods for determining the structure of algal polysaccharides Part 3. The structure of the polysaccharide from Cladhymenia oblongifolia. (2000) Botanica Marina, 43, pp. 263-271
  • Miller, I.J., The structure of the polysaccharides from two Lophurella species as determined by 13C NMR spectroscopy (2002) Botanica Marina, 45, pp. 373-379
  • Usov, A.I., Klochkova, N.G., Polysaccharides of algae 45. Polysaccharide composition of red seaweeds from Kamchatka coastal waters (Northwestern Pacific) studied by reductive hydrolysis of biomass. (1992) Botanica Marina, 35, pp. 371-378
  • Miller, I.J., Evaluation of the structures of polysaccharides from two New Zealand members of the Ceramiaceae (2003) Botanica Marina, 46, pp. 378-385
  • Kolender, A.A., Matulewicz, M.C., Sulfated polysaccharides from the red seaweed Georgiella confluens (2002) Carbohydrate Reearch, 337, pp. 57-68
  • Miller, I.J., Evaluation of the structure of the polysaccharide from Myriogramme denticulata as determined by 13C NMR spectroscopy (2001) Botanica Marina, 44, pp. 253-259
  • Miller, I.J., Evaluation of the structures of polysaccharides from three taxa in the genus Hymenena and from Acrosorium decumbens (Rhodophyta, Delesseriaceae) (2005) Botanica Marina, 48, pp. 148-156
  • Zhang, Q., Qi, H., Zhao, T., Deslandes, E., Ismaeli, N.M., Molloy, F., Critchley, A.T., Chemical characteristics of a polysaccharide from Porphyra capensis (Rhodophyta) (2005) Carbohydrate Research, 340, pp. 2447-2450
  • Zhang, Q., Li, N., Liu, X., Zhao, Z., Li, Z., Xu, Z., The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity (2004) Carbohydrate Research, 339, pp. 105-111
  • Mazumder, S., Ghosal, P.K., Pujol, C.A., Carlucci, M.J., Damonte, E.B., Ray, B., Isolation, chemical investigation and antiviral activity of polysaccharides from Garcilaria corticata (Gracilariaceae, Rhodophyta) (2002) International Journal of Biological Macromolecules, 31, pp. 87-95
  • Andriamanantoanina, H., Chambat, G., Rinaudo, M., Fractionation of extracted Madagascar Gracilaria corticata polysaccharides: structure and properties (2007) Carbohydrate Polymers, 68, pp. 77-88
  • Cases, M.R., Stortz, C.A., Cerezo, A.S., Methylated, sulphated xylogalactans from the red seaweed Corallina officinalis (1992) Phytochemistry, 31, pp. 3897-3900
  • Cases, M.R., Stortz, C.A., Cerezo, A.S., Structure of the ćorallinanś-sulfated xylogalactans from Corallina officinalis (1994) International Journal of Biological Macromolecules, 16, pp. 93-97
  • Takano, R., Hayashi, J., Hayashi, K., Hara, S., Hirase, S., Structure of a watersoluble polysaccharide sulfate from the red seaweed Joculator maximus Manza (1996) Botanica Marina, 39, pp. 95-102
  • Usov, A.I., Bilan, M.I., Klochkova, N.G., Polysaccharides of algae 48. Polysaccharide composition of several calcareous red algae. Isolation of alginate from Corallina pilulifera P. et R. (Rhodophyta, Corallinaceae). (1995) Botanica Marina, 38, pp. 43-51
  • Usov, A.I., Bilan, M.I., Shashkov, A.S., Structure of a sulfated xylogalactan from the calcareous red alga Corallina pilulifera Pet R. (Rhodophyta, Corallinaceae). (1997) Carbohydrate Research, 303, pp. 93-102
  • Navarro, D.A., Stortz, C.A., Isolation of xylogalactans from the Corallinales: influence of the extraction method on yields and compositions (2002) Carbohydrate Polymers, 49, pp. 57-62
  • Navarro, D.A., Stortz, C.A., The system of xylogalactans from the red seaweed Jania rubens (Corallinales, Rhodophyta) (2008) Carbohydrate Research, 343, pp. 2613-2622
  • Navarro, D.A., Ricci, A.M., Rodríguez, M.C., Stortz, C.A., Xylogalactans from Lithothamnion heterocladum, a crustose member of the Corallinales (Rhodophyta) (2011) Carbohydrate Polymers, 84, pp. 944-951
  • Bilan, M.I., Usov, A.I., Polysaccharides of calcareous algae and their effect on the calcification process (2001) Russian Journal Bioorganic Chemistry, 27, pp. 2-16
  • Fu, X.T., Kim, S.M., Agarase: review of major sources, categories, purification method, enzyme characteristics and applications (2010) Marine Drugs, 8, pp. 200-218
  • Gupta, V., Trivedi, N., Kumar, M., Reddy, C.R.K., Jha, B., Purification and characterization of exo-β-agarase from an endophytic marine bacterium and its catalytic potential in bioconversion of red algal cell wall polysaccharides into galactans (2013) Biomass Bioenerg, 49, pp. 290-298
  • Duckworth, M., Turvey, J.R., The action of a bacterial agarase on agarose, porphyran and alkali-treated porphyran (1969) Biochemical Journal, 113, pp. 687-692
  • Duckworth, M., Turvey, J.R., The specificity of an agarase from a Cytophaga species (1969) Biochemical Journal, 113, pp. 693-696
  • Duckworth, M., Yaphe, W., The structure of agar Part II. The use of a bacterial agarose to elucidate structural features of the charged polysaccharides in agar. (1971) Carbohydrate Research, 16, pp. 435-445
  • Duckworth, M., Hong, C.K., Yaphe, W., The agar polysaccharides of Gracilaria species (1971) Carbohydrate Research, 18, pp. 1-9
  • Morrice, L., McLean, M.W., Long, W.F., Williamson, F.B., Porphyran primary structure An investigation using α-agarase I from Pseudomonas atlantica and I3CNMR spectroscopy. (1983) European Journal Biochemistry, 133, pp. 671-684
  • Hamer, G.K., Bhattacharjee, S.S., Yaphe, W., Analysis of the enzymic hydrolysis products of agarose by 13C-n.m.r (1977) spectroscopy. Carbohydrate Research, 54, pp. C7-C10
  • Young, K.S., Bhattacharjee, S.S., Yaphe, W., Enzymic cleavage (1978) Carbohydrate Research, 66, pp. 207-212
  • Rochas, C., Potin, P., Kloareg, B., NMR spectroscopic investigation of agarose oligomers produced by anα-agarase (1994) Carbohydrate Research, 253, pp. 69-77
  • Kazlowski, B., Pan, C.L., Ko, Y.T., Separation and quantification of neoagaroand agaro-oligosaccharide products generated from agarose digestion by β-agarase and HCl in liquid chromatography system (2008) Carbohydrate Research, 343, pp. 2443-2450
  • Correc, G., Hehemann, J.H., Czjzek, M., Helbert, W., Structural analysis of the degradation products of porphyran digested by Zobellia galactanivorans β- porphyranase A (2011) Carbohydrate Polymers, 83, pp. 277-283
  • Stevenson, T.T., Furneaux, R.H., Chemical methods for the analysis of sul sulphated galactans from red algae (1991) Carbohydrate Research, 210, pp. 277-298
  • Garegg, P.J., Lindberg, B., Konradsson, P., Kvarnström, I., Hydrolysis of glycosides under reducing conditions (1988) Carbohydrate Research, 176, pp. 45-148
  • Jol, C.N., Neiss, T.G., Penninkhof, B., Rudolph, B., De Ruiter, G.A., A novel high-performance anion-exchange chromatographic method for the analysis of carrageenans and agars containing 3,6-anhydrogalactose (1999) Analytical Biochemistry, 268, pp. 213-222
  • Morrison, I.M., Hydrolysis of plant cell walls with trifluoroacetic acid (1988) Phytochemistry, 27, pp. 1097-1100
  • Usov, A.I., Elashvili Ya, M., Polysaccharides of algae (1991) 44. Investigation of sulfated galactans from Laurencia nipponica Yamada (Rhodophyta, Rhodomelaceae) using partial reductive hydrolysis. Botanica Marina, 34, pp. 553-560
  • Gonçalves, A.G., Ducatti, D.R.B., Duarte, M.E.R., Noseda, M.D., Sulfated and pyruvylated disaccharide alditols obtained from a red seaweed galactan: ESIMS and NMR approaches (2002) Carbohydrate Research, 337, pp. 2443-2453
  • Gonçalves, A.G., Ducatti, D.R.B., Paranha, R.G., Duarte, M.E.R., Noseda, M.D., Positional isomers of sulfated oligosaccharides obtained from agarans and carrageenans: preparation and capillary electrophoresis separation (2005) Carbohydrate Research, 340, pp. 2123-2134
  • Gonçalves, A.G., Ducatti, D.R.B., Grindley, T.B., Duarte, M.E.R., Noseda, M.D., ESI-MS Differential fragmentation of positional isomers of sulfated oligosaccharides derived from carrageenans and agarans (2010) Journal of the American Society for Mass Spectrometry, 21, pp. 1404-1416
  • Kloareg, B., Quatrano, R.S., Structure of the cell wall of marine algae and ecophysiological functions of the matrix polysaccharides (1988) Oceanography and Marine Biology Annual Review, 26, pp. 259-315
  • Miller, I.J., The chemotaxonomic significance of the water soluble red algal polysaccharides (1997) Recent Research Developments in Phytochemistry, 1, pp. 531-565

Citas:

---------- APA ----------
Ciancia, M. & Matulewicz, M.C. (2015) . Agarans: Sulfated precursors and derivatives from agarose, and related sulfated GALACTANS. Sulfated Polysaccharides, 199-216.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p199_Ciancia [ ]
---------- CHICAGO ----------
Ciancia, M., Matulewicz, M.C. "Agarans: Sulfated precursors and derivatives from agarose, and related sulfated GALACTANS" . Sulfated Polysaccharides (2015) : 199-216.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p199_Ciancia [ ]
---------- MLA ----------
Ciancia, M., Matulewicz, M.C. "Agarans: Sulfated precursors and derivatives from agarose, and related sulfated GALACTANS" . Sulfated Polysaccharides, 2015, pp. 199-216.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p199_Ciancia [ ]
---------- VANCOUVER ----------
Ciancia, M., Matulewicz, M.C. Agarans: Sulfated precursors and derivatives from agarose, and related sulfated GALACTANS. Sulfated Polysaccharides. 2015:199-216.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p199_Ciancia [ ]