Parte de libro

Estamos trabajando para incorporar este artículo al repositorio

Abstract:

Large amounts of wastes arising from industrial processing of agricultural products constitute alternative renewable bioresources potentially attractive for bioenergy generation and/or for the manufacture of other useful products. Their conversion additionally contributes to reduce environmental pollution. The present chapter examines thermochemical conversion of the wastes generated from industrialization of an agricultural product into biofuels and/or products potentially applicable for environmental remediation. The selected wastes arise from industrial processing of whole branches (leaves and twigs) from a native evergreen tree Ilex paraguariensis, belonging to the Aquifoliaceae family, for the manufacture of yerba mate. It is a widespread product massively consumed in Southern Latin America countries to prepare a popular herbal tea-like beverage. The commercial final product generally contains less than ~ 35% twigs, since they provide an unpleasantly bitter taste to the infusion, and therefore huge quantities of unused twigs emerge as a by-product. Kinetics for the pyrolysis of the twigs is characterized by non-isothermal thermogravimetric analysis from room temperature up to 900 °C to obtain information for the proper design of full-scale pyrolyzers. A deactivation model which assumes an overall first-order process and considers the physicochemical changes taking place in the biomass with the pyrolysis course through variations of the reaction rate constant with the temperature and solid conversion enables a proper representation of the experimental data over the whole temperature range, with estimated energy activation values between 49 and 137 kJ mol-1. Likewise, yield and characteristics of the three kinds of pyrolysis products, comprising bio-char, bio-oil, and gases, are examined from experiments conducted in a bench-scale fixed-bed installation at temperatures in the range 400 - 700 °C. Gas yield increases with increasing temperature, attaining 43% at 700 °C, while the biochar yield decreases from 30% to 20% with temperature rise. Yield of the bio-oil attains a maximum (53%) at 500 °C, likely arising from the competition between primary formation of volatiles, at relatively low temperatures, and secondary degradation of the condensable vapors at the higher temperatures. All the pyrolysis products could be used in energy applications. The obtained biochars with higher heating value (HHV) of 23 - 24 MJ kg-1 have potential as environmentally friendly solid biofuel and could be employed for the manufacture of briquettes mainly for domestic use. Accounting for their high stability, as judged from the molar O:C ratio, another possible application could be incorporation of the biochars into the soil for the storage of atmospheric carbon. In turn, the bio-oils show organic fractions with HHV between 28 and 33 MJ kg-1. Density values of the as-produced liquids (~1 kg dm-3) are rather higher than those for conventional hydrocarbon fuels due to their higher contents of oxygen and water. The crude bio-oils could be directly burnt or subjected to further upgrading to attain characteristics similar to those of fuel-oil. Pyrolysis of the twigs yields low to medium heating value-gases (5 - 11 MJ m-3), mostly composed by CO2, CO, CH4 and H2. Gas composition depends on the temperature, even though CO2 is the major generated species, followed by CO. Proportion of CO2 decreases with temperature, particularly at 700 °C, accompanied by enhancements in the HHV of the gaseous mixtures, as a consequence of compositional variations, attaining a maximum value of 11 MJ m-3. They might contribute to the energy sustainability of the process. Besides, phosphoric acid activation of the yerba mate twigs at pre-established moderate conditions leads to good quality activated carbons with well-developed porous structures characterized by textural parameters (BET surface area of ~ 1000 m2 g-1; total pore volume of 1cm3 g-1) comparable to those of commercially available samples. © 2015 Nova Science Publishers, Inc.

Registro:

Documento: Parte de libro
Título:Valorization of wastes from industrial processing of an agricultural product via thermochemical conversion processes
Autor:Bonelli, P.R.; Cukierman, A.L.
Filiación:Programa de Investigation y Desarrollo de Fuentes Alternativas de Materias Primas y Energia(PINMATE), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Buenos Aires, Argentina
Cátedra de Tecnología Farmacéutica II, Depto. de Tecnología Farmacéutica, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:activated carbons; agro-industrial waste; bio-char; bio-oil; bioenergy; kinetics; pyrolysis; yerba mate twigs
Año:2015
Página de inicio:141
Página de fin:167
Título revista:Agricultural Wastes: Characteristics, Types and Management
Título revista abreviado:Agric. Wastes: Charact., Types and Manag.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p141_Bonelli

Referencias:

  • Anesini, C., Ferraro, G., Filip, R., Peroxidase-like activity of Ilexparaguariensis (2006) Food Chemistry, 97, pp. 459-464
  • Baccar, R., Sarrà, M., Bouzid, J., Feki, M., Blánquez, P., Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product (2012) Chemical Engineering Journal, pp. 211-212 and 310-317
  • Baggio, P., Baratieri, M., Gasparella, A., Longo, G.A., Energy and Environmental Analysis of an Innovative System Based on Municipal Solid Waste (MSW) Pyrolysis and Combined Cycle (2008) Applied Thermal Engineering,, 28, pp. 136-144
  • Balci, S., Dogu, T., Yucel, H., Pyrolysis kinetics of lignocellulosic materials (1993) Industrial Engineering Chemistry Research,, 32, pp. 2573-2579
  • Basso, M.C., Cerrella, E.G., Cukierman, A.L., Activated carbons developed from a rapidly renewable biosource for removal of cadmium (II) and nickel (II) ions from dilute aqueous solutions (2002) Industrial and Engineering Chemistry Research,, 41, pp. 180-189
  • Basso, M.C., Cukierman, A.L., Arundo donax-based activated carbons for aqueous-hase adsorption of volatile organic compounds (2005) Industrial and Engineering Chemistry Research, 44, pp. 2091-2100
  • Basso, M.C., Cerrella, E.G., Buonomo, E.L., Bonelli, P.R., Cukierman, A.L., Thermochemical conversion of Arundo donax into useful solid products (2005) Energy Sources, 27, pp. 1429-1438
  • Basso, M.C., Cukierman, A.L., Wastewater treatment by chemically activated carbons from giant reed: effect of the activation atmosphere on properties and adsorptive behavior (2006) Separation Science & Technology,, 41, pp. 149-156
  • Blanco Castro, J., Bonelli, P.R., Cerrella, E.G., Cukierman, A.L., Phosphoric acid activation of agricultural residues and bagasse from sugar cane: influence of the experimental conditions on adsorption characteristics of activated carbons (2000) Industrial and Engineering Chemistry Research,, 39, pp. 4166-4172
  • Bonelli, P.R., Della Rocca, P.A., Cerrella, E.G., Cukierman, A.L., Effect of pyrolysis temperature on composition, surface properties and thermal degradation rates of Brazil nut shells (2001) Bioresource Technology, 76, pp. 15-22
  • Bonelli, P.R., Della Rocca, P.A., Cerrella, E.G., Cukierman, A.L., Comparative study on char properties and pyrolysis kinetics of different lignocellulosic wastes. In Progress in Thermochemical Biomass Conversion (2001) Blackwell Science, 2, pp. 1116-1128. , Editor A.V. Bridgewater. London, UK
  • Bonelli, P.R., Cerrella, E.G., Cukierman, A.L., Slow pyrolysis of nutshells: characterization of derived chars and of process kinetics (2003) Energy Sources, 25 (8), pp. 767-778
  • Bonelli, P.R., Buonomo, E.L., Cukierman, A.L., Pyrolysis of sugarcane bagasse and co-pyrolysis with an Argentinean subbituminous coal. Energy Sources (2007) Part A: Recovery, Utilization, and Environmental Effects, 29, pp. 731-740
  • Bonelli, P.R., Cukierman, A.L., Pyrolysis characteristics of different kinds of lignins (2012) Lignin: Properties and Applications in Biotechnology and Bioenergy, pp. 355-380. , In Editor Ryan J. Paterson. Nova Science Publishers Inc., N.Y., USA. Chapter 11
  • Bonelli, P.R., Nunell, G.V., Fernandez, M.E., Buonomo, E.L., Cukierman, A.L., The potential applications of the bio-char derived from the pyrolysis of an agro-industrial waste (2012) Effects of temperature and acid-pretreatment, 34, pp. 746-755. , Energy Sources. Part A: Recovery, Utilization, and Environmental Effects
  • Bridgwater, A.V., Review of fast pyrolysis of biomass and product upgrading (2012) Biomass and Bioenergy,, 38, pp. 68-94
  • Bruun, E.W., Ambus, P., Egsgaard, H., Hauggaard-Nielsen, H., Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics (2012) Soil Biology & Biochemistry,, 46, pp. 73-79
  • Butler, E., Devlin, G., Meier, D., McDonnell, K., A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading (2011) Renewable and Sustainable Energy Reviews,, 15, pp. 4171-4186
  • Canitrot, L., Grosso, M.J., Méndez, A., (2011), http://www.mecon.gov.ar/peconomica/docs/Complejo_Yerbatero.pdf, Available:; Cifuentes, A.R., Avila, K., García, J.C., Daza, C.E., The pyrolysis of rose stems to obtain activated carbons: A study on the adsorption of Ni(II) (2013) Ind. Eng. Chem. Res., 52, pp. 16197-16205
  • Claoston, N., Samsuri, A.W., Ahmad Husni, M.H., Mohd Amran, M.S., Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars (2014) Waste Management & Research,, 32, pp. 331-339
  • Creamer, A.E., Gao, B., Zhang, M., Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood (2014) Chemical Engineering Journal,, 249, pp. 174-179
  • Crombie, K., Mašek, O., Pyrolysis biochar systems, balance between bioenergy and carbon sequestration (2014) GCB Bioenergy, , Global Change Biology Bioenergy Published by John Wiley & Sons Ltd
  • Cukierman, A.L., Della Rocca, P.A., Bonelli, P.R., Cerrella, E.G., Pyrolysis of an agricultural by-product: a characterization study (1999) Pergamon Elsevier Science, 2, pp. 1201-1208. , In "Biomass: A Growth Opportunity in Green Energy and Value-Added Products". Editors R.P. Overend and E. Chornet
  • Cukierman, A.L., Nunell, G.V., Fernández, M.E., De Celis, J., Kim, M.R., Gurevich Messina, L., Bonelli, P.R., Thermochemical processing of wood from invasive arboreal species for sustainable bioenergy generation and activated carbons production (2012) Nova Science Publishers Inc., pp. 1-46. , In: "Invasive Species: Threats, Ecological Impact and Control Methods". Eds Blanco JJ, Fernandes A. Chapter 1, New York, USA
  • Cukierman, A.L., (2013) Development and environmental applications of activated carbon cloths, 2013. , http://dx.doi.org./10.1155/2013/26152, Review. ISRN Chemical Engineering. 31 pages
  • De Celis, J., Amadeo, N.E., Cukierman, A.L., In situ modification of activated carbons developed from a native invasive wood on removal of trace toxic metals from wastewater (2009) Journal of Hazardous Materials, 161, pp. 217-223
  • Della Rocca, P.A., Cerrella, E.G., Bonelli, P.R., Cukierman, A.L., Pyrolysis of hardwood residues: on kinetics and chars characterization (1999) Biomass & Bioenergy,, 16, pp. 79-88
  • Di Blasi, C., Modeling Chemical and Physical Processes of Wood and Biomass pyrolysis (2008) Progress in Energy and Combustion Science,, 34, pp. 47-90
  • Di Blasi, C., Branca, C., Galgano, A., Biomass screening for the production of furfural via thermal decomposition (2010) Industrial and Engineering Chemistry Research,, 49, pp. 2658-2671
  • Durán-Valle, C.J., Gómez-Corzo, M., Pastor-Villegas, J., Gómez-Serrano, V., Study of cherry stones as raw material in preparation of carbonaceous adsorbents (2005) Journal of Analytical and Applied Pyrolysis,, 73, pp. 59-67
  • El-Sayed, G.O., Yehia, M.M., Asaad, A.A., Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid (2014) Water Resources and Industry, 7-8, pp. 66-75
  • Encinar, J.M., González, J.F., González, J., Fixed-bed pyrolysis of Cynara cardunculus L. Product yields and compositions (2000) Fuel Processing Technology,, 68, pp. 209-222
  • Encinar, J.M., Gónzalez, J.F., Martínez, G., Romám, S., Jerusalem artichoke pyrolysis: Energetic evaluation (2009) Journal of Analytical and Applied Pyrolysis,, 85, pp. 294-300
  • Fabbri, D., Torri, C., Spokas, K.A., Analytical pyrolysis of synthetic chars derived from biomass with potential agronomic application (biochar). Relationships with impacts on microbial carbon dioxide production (2012) Journal of Analytical and Applied Pyrolysis,, 93, pp. 77-84
  • Fernandez, M.E., Nunell, G.V., Bonelli, P.R., Cukierman, A.L., Activated carbon developed from orange peels: Batch and dynamic competitive adsorption of basic dyes (2014) Industrial Crops and Products,, 62, pp. 437-445
  • Ghazi, K.A., Fuels, Energy, and the Environment (2013) Boca Raton, , CRC Press, Taylon and Francis Group, USA
  • García-Perez, M., Wang, X.S., Shen, J., Rhodes, M.J., Tian, F., Lee, W.-J., Wu, H., Li, C., Fast pyrolysis of oil mallee woody biomass: Effect of temperature on the yield and quality of pyrolysis products (2008) Industrial and Engineering Chemistry Research,, 47, pp. 1846-1854
  • Girgis, B.S., Attia, A.A., Fathy, N.A., Modification in adsorption characteristics of activated carbon produced by H3PO4 under flowing gases (2007) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 299, pp. 79-87
  • González, J.F., Ramiro, A., González García, C.M., Gañán, J., Encinar, J.M., Sabio, E., Rubiales, J., Pyrolysis of Almond Shells (2005) Energy Applications of Fractions, Industrial and Engineering Chemistry Research,, 44, pp. 3003-3012
  • González, J., Buonomo, E., Bonelli, P., Cukierman, A.L., Pyrolysis of Biomass from Sustainable Energy Plantations: Effect of Mineral Matter Reduction on Kinetics and Charcoal Pore Structure (2008) Energy Sources Part A: Recovery, Utilization, and Environmental Effects,, 30, pp. 809-817
  • González, J.F., Román, S., Encinar, J.M., Martínez, G., Pyrolysis of various biomass residues and char utilization for the production of activated carbons (2009) Journal of Analytical and Applied Pyrolysis,, 85, pp. 134-141
  • Goyal, H.B., Seal, D., Saxena, R.C., Bio-fuels from thermochemical conversion of renewable resources: A review (2008) Renewable and Sustainable Energy Reviews, 12, pp. 504-517
  • Guizani, C., Escudero Sanz, F.J., Salvador, S., Effects of CO2 on biomass fast pyrolysis: Reaction rate, gas yields and char reactive properties (2014) Fuel,, 116, pp. 310-320
  • Guo, M., Song, W., Buhain, J., Bioenergy and biofuels: History, status, and perspective (2015) Renewable and Sustainable Energy Reviews,, 42, pp. 712-725
  • Heck, C.I., Schmalko, M., Gonzalez de Mejia, E., Effect of growing and drying conditions on the phenolic composition of mate teas (Ilex paraguariensis) (2008) Journal of Agricultural and Food Chemistry, 56, pp. 8394-8403
  • Jand, N., Foscolo, P.U., Decomposition of wood particles in fluidized beds (2005) Industrial and Engineering Chemistry Research,, 44, pp. 5079-5089
  • Jagtoyen, M., Derbyshire, F., Activated carbons from yellow poplar and white oak by H3PO4 activation (1998) Carbon, 36, pp. 1085-1097
  • Kanaujia, P.K., Sharma, Y.K., Garg, M.O., Tripathi, D., Singh, R., Review of analytical strategies in the production and upgrading of bio-oils derived from lignocellulosic biomass (2014) Journal of Analytical and Applied Pyrolysis, 105, pp. 55-74
  • Kim, K.H., Kim, T.S., Lee, S.M., Choi, D., Yeo, H., Choi, I.G., Choi, J.W., Comparison of physicochemical features of biooils and biochars produced from various woody biomasses by fast pyrolysis (2013) Renewable Energy,, 50, pp. 188-195
  • Kwiatkowski, J.F., Activated Carbon: Classifications, Properties and Applications (2011) Nova Science Publishers Inc., , N.Y., USA
  • Lehmann, J., Gaunt, J., Rondon, M., Bio-char sequestration in terrestrial ecosystems - A review (2006) Mitigation and Adaptation Strategies for Global Change,, 11, pp. 403-427
  • Long, H., Li, X., Wang, H., Jia, J., Biomass resources and their bioenergy potential estimation: A review (2013) Renewable and Sustainable Energy Reviews,, 26, pp. 344-352
  • Ma, Z., Chen, D., Gu, J., Bao, B., Zhang, Q., Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods (2015) Energy Conversion and Management, 89, pp. 251-259
  • Marsh, H., Rodriguez-Reinoso, F., Activated Carbon (2006) Elsevier B.V, Amsterdam, , The Netherlands
  • Mezohegyi, G., van der Zee, F.P., Font, J., Fortuny, A., Fabregat, A., Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon (2012) Journal of Environmental Management,, 102, pp. 148-164
  • Mohan, D., Pittman, C.U., Steele, P.H., Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review (2006) Energy & Fuels,, 20, pp. 848-889
  • Mortensen, P.M., Grunwaldt, J.D., Jensen, P.A., Knudsen, K.G., Jensen, A.D., A review of catalytic upgrading of bio-oil to engine fuels (2011) Applied Catalysis A: General, 407, pp. 1-19
  • Nabarlatz, D.A., De Celis, J., Bonelli, P.R., Cukierman, A.L., Batch and dynamic sorption of Ni(II) ions by activated carbon based on a native lignocellulosic precursor (2012) Journal of Environmental Management,, 97, pp. 109-115
  • Nunell, G.V., Fernandez, M.E., Bonelli, P.R., Cukierman, A.L., Removal of nitrate from wastewater by activated carbons developed from sawdust of an invasive wood (2012) Biomass and Bioenergy,, 44, pp. 87-95
  • Nunell, G.V., Fernandez, M.E., Bonelli, P.R., Cukierman, A.L., Nitrate uptake improvement by modified activated carbons developed from two species of pine cones (2015) Journal of Colloids and Interface Science,, 440, pp. 102-108
  • Park, Y.K., Yoo, M.L., Lee, H.W., Park, S.H., Jung, S.C., Park, S.S., Kim, S.C., Effects of operation conditiones on pyrolysis characteristics of agricultural residues (2012) Renewable Energy,, 42, pp. 125-130
  • Puziy, A.M., Poddubnaya, O.I., Martínez-Alonso, A., Suarez-García, F., Tascon, J.M.D., Synthetic carbons activated with phosphoric acid. I. Surface chemistry and ion binding properties (2002) Carbon, 40, pp. 493-505
  • Puziy, A.M., Poddubnaya, O.I., Martínez-Alonso, A., Castro-Muñiz, A., Suarez-García, F., Tascón, J.M.D., Oxygen and phosphorus enriched carbons from lignocellulosic material (2007) Carbon, 45, pp. 1941-1950
  • Qi, Z., Jie, C., Tiejun, W., Ying, X., Review of biomass pyrolysis oil properties and upgrading research (2007) Energy Conversion and Management, 48, pp. 87-92
  • Qu, T., Guo, W., Shen, L., Xiao, J., Zhao, K., Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin (2011) Industrial and Engineering Chemistry Research,, 50, pp. 10424-10433
  • Ramos, M.E., Gonzalez, J.D., Bonelli, P.R., Cukierman, A.L., Effect of process conditions on physicochemical and electrical characteristics of denim-based activated carbon cloths (2007) Industrial and Engineering Chemistry Research,, 46, pp. 1167-1173
  • Ramos, M.E., Bonelli, P.R., Cukierman, A.L., (2011) Strategies for optimizing the development of cellulose-based activated carbon cloths by the chemical activation process, pp. 475-508. , Chapter 17, in: Activated Carbon: Classifications, Properties and Applications. J. F. Kwiatkowski (Ed.). Nova Science Publishers Inc. N.Y., USA
  • Scipioni, G.P., Ferreyra, D.J., Acuña, M., Schmalko, M.E., Rebaudioside A release from matrices used in a yerba mate infusion (2010) Journal of Food Engineering,, 100, pp. 627-633
  • Schimmelpfennig, S., Müller, C., Grünhage, L., Koch, C., Kammann, C., Biochar, hydrochar and uncarbonized feedstock application to permanent grassland. Effects on greenhouse gas emissions and plant growth (2014) Agriculture, Ecosystems and Environment,, 191, pp. 39-52
  • Shi, L., Yu, S., Wang, F.C., Wang, J., Pyrolytic characteristics of rice straw and its constituents catalyzed by internal alkali and alkali earth metals (2012) Fuel,, 96, pp. 586-594
  • Spokas, K.A., Review of the stability of biochar in soils: Predictability of O:C molar ratios (2010) Carbon Management, 1, pp. 289-303
  • Strezov, V., Evans, T.J., Hayman, C., Thermal conversion of elephant grass (Pennisetum Purpureum Schum) to bio-gas, bio-oil and charcoal (2008) Bioresource Technology,, 99, pp. 8394-8399
  • Valente Nabais, J., Carrott, P., Ribeiro Carrott, M.M.L., Luz, V., Ortiz, A.L., Influence of preparation conditions in the textural and chemical properties of activated carbons from a novel biomass precursor: The coffee endocarp (2008) Bioresource Technology,, 99, pp. 7224-7231
  • Valente Nabais, J., Laginhas, C., Ribeiro Carrott, M.M.L., Carrott, P.J.M., Crespo Amoros, J.E., Nadal Gisbert, A.V., Surface and porous characterisation of activated carbons made from a novelbiomass precursor, the esparto grass (2013) Applied Surface Science, 265, pp. 919-924
  • Vázquez-Santos, M.B., Suárez-García, F., Martínez-Alonso, A., Tascón, J.M.D., Activated carbon fibers with a high heteroatom content by chemical activation of PBO with phosphoric acid (2012) Langmuir,, 28, pp. 5850-5860
  • Vernersson, S.T., Bonelli, P.R., Cerrella, E.G., Cukierman, A.L., Arundo donax cane as precursor for activated carbons preparation by phosphoric acid activation (2002) Bioresource Technology,, 83, pp. 95-104
  • Windeatt, J.H., Ross, A.B., Williams, P.T., Forster, P.M., Nahil, M.A., Singh, S., Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment (2014) Journal of Environmental Management, 146, pp. 189-197
  • White, J.E., Catallo, W.J., Legendre, B.L., Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies (2011) Journal of Analytical and Applied Pyrolysis,, 91, pp. 1-33
  • Woolf, D., Amonette, J.E., Street-Perrott, F.A., Lehmann, J., Joseph, S., Sustainable biochar to mitigate global climate change (2010) Nature Communications, , www.nature.com/naturecommunications
  • Zhang, J., Liu, J., Liu, R., Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate (2015) Bioresource Technology,, 176, pp. 288-291
  • Zimmerman, A., Abiotic and microbial oxidation of laboratory-produced black carbon (Biochar) (2010) Environmental Science and Technology,, 44, pp. 1295-1301

Citas:

---------- APA ----------
Bonelli, P.R. & Cukierman, A.L. (2015) . Valorization of wastes from industrial processing of an agricultural product via thermochemical conversion processes. Agricultural Wastes: Characteristics, Types and Management, 141-167.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p141_Bonelli [ ]
---------- CHICAGO ----------
Bonelli, P.R., Cukierman, A.L. "Valorization of wastes from industrial processing of an agricultural product via thermochemical conversion processes" . Agricultural Wastes: Characteristics, Types and Management (2015) : 141-167.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p141_Bonelli [ ]
---------- MLA ----------
Bonelli, P.R., Cukierman, A.L. "Valorization of wastes from industrial processing of an agricultural product via thermochemical conversion processes" . Agricultural Wastes: Characteristics, Types and Management, 2015, pp. 141-167.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p141_Bonelli [ ]
---------- VANCOUVER ----------
Bonelli, P.R., Cukierman, A.L. Valorization of wastes from industrial processing of an agricultural product via thermochemical conversion processes. Agric. Wastes: Charact., Types and Manag. 2015:141-167.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816348_v_n_p141_Bonelli [ ]