Parte de libro

Diez, B.; Hajos, S.; Meiss, R.; Ernst, G.; Teijo, M.J.; Batlle, A.; Fukuda, H. "In vitro and in vivo 5-aminolevulinic acid-based photodynamic therapy in sensitive ani drug resistant leukemic murine cells" (2015) Photodynamic Therapy: Fundamentals, Applications and Health Outcomes:173-191
Estamos trabajando para incorporar este artículo al repositorio

Abstract:

The effects of combined administration of doxorubicin (DOX) and vincristine (VCR), with 5-aminolevulinic acid photodynamic treatment (ALA-PDT), were analyzed in sensitive murine leukemic cell lines (LBR-) and DOX and VCR chemoresistant LBR-D160 and LBR-V160 cell lines. Low doses of DOX and VCR increased anti-cancer effect of ALA-PDT in LBR-cells. Decrease in cell survival was higher when the combination VCR + ALA-PDT was used compared to DOX + ALA-PDT. Resistant cell lines LBR-D160 and LBR-V160 were sensitive to ALA-PDT; however, no changes occured when combining therapies. Thus, ALA-PDT can overcome drug resistance and is a good candidate for using treating multidrug resistant (MDR) cells. This combined treatment were evaluated in a murine model. For this purpose, BALB/c mice were inoculated with LBR-cells previously treated with DOX or VCR plus ALA-PDT. 30 days after treatment animals were sacrificed and tumoral infiltration analyzed in many tissues: liver, kidney, spleen, lung, brain, timus, lymph nodes. Histologic studies revealed that in control animals inoculated with LBR-cells without any treatment, infiltration reached 87% in all the tissues analyzed. Animals inoculated with LBR-cells treated with only ALA-PDT, showed 50% of organs infiltrated. When animals were inoculated with cells treated with DOX or VCR, tumor infiltration was found in 87.5% and 75% of organs, respectively. In the case of inoculation with LBR-cells treated with DOX or VCR plus ALA-PDT, no evidence of tumor infiltration was observed in any of the tissues. These results show the beneficial effect of combining therapies, suggesting the potential therapeutic alternative in leukemic patients, additionaly bringing the possibility of diminishing chemotherapy dose, thus minimizing undesirable drug side effects. © 2015 by Nova Science Publishers, Inc. All rights reserved.

Registro:

Documento: Parte de libro
Título:In vitro and in vivo 5-aminolevulinic acid-based photodynamic therapy in sensitive ani drug resistant leukemic murine cells
Autor:Diez, B.; Hajos, S.; Meiss, R.; Ernst, G.; Teijo, M.J.; Batlle, A.; Fukuda, H.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Centro de Investigaciones sobre Porfirias y Porfirinas (CIPYP), CONICET, UBA, Viamonte 1881-10 A, Buenos Aires, 1056, Argentina
IDEHU, UBA, CONICET, Argentina
Instituto de Estudios Oncológicos, Sección Patología, Academia Nacional de Medicina, Argentina
Palabras clave:5-aminolevulinic acid; Chemotherapy resistance; Leukemic cells; Photodynamic therapy
Año:2015
Página de inicio:173
Página de fin:191
Título revista:Photodynamic Therapy: Fundamentals, Applications and Health Outcomes
Título revista abreviado:Photodyn. Ther.: Fundam., Appl. and Health Outcomes
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816346_v_n_p173_Diez

Referencias:

  • Gatti, L., Zunino, F., Overview of tumor cell chemoresistance mechanisms. (2005) Methods Mol. Med., 111, pp. 127-148. , Review
  • Wilson, T.R., Longley, D.B., Johnston, P.G., Chemoresistance in solid tumours (2006) Ann. Oncol., 17, pp. 315-324. , Review
  • Fodale, V., Pierobon, M., Liotta, L., Petricoin, E., Mechanism of cell adaptation: when and how do cancer cells develop chemoresistance? (2011) Cancer J., 17 (2), pp. 89-95. , Review
  • Hale, G.A., Tong, X., Benaim, E., Cunningham, J.M., Heslop, H.E., Horwiz, E.M., Allogeneic bone marrow transplantation in children failing prior autologous bone marrow transplantation. (2001) Bone Marrow Transplant, 27 (2), pp. 155-162
  • Lie, A.K., Au, W.Y., Liang, R., Haematopoietic stem cell transplantation in Hong Kong (2009) Hong Kong Med. J, 15, pp. 17-21
  • Schultz, F.W., Martens, A.C.M., Hagenbeek, A., The contribution of residual leukemia cells in the graft to leukemia relapse after autologous bone marrow transplantation: mathematical considerations. (1989) Leukemia, 3 (7), pp. 530-534
  • Imrie, K., Dicke, K.A., Keating, A., Autologous bone marrow transplantation for acute myeloid leukemia. (1996) Stem Cells, 14 (1), pp. 69-78. , Review
  • Devetten, M., Armitage, J.O., Hematopoietic cell transplantation: progress and obstacles. (2007) Ann Oncol., 18 (9), pp. 1450-1456. , Review
  • Houtenbos, I., Bracho, F., Davenport, V., Slack, R., van de Ven, C., Suen, Y., Autologous bone marrow transplantation for childhood acute lymphoblastic leukemia: a novel combined approach consisting of ex vivo marrow purging, modulation of multidrug resistance, induction of autograft vs. leukemia effect, and post-transplant immuno-and chemo-therapy (PTIC). (2001) Bone Marrow Transplant, 27 (2), pp. 145-153
  • Kostrzewa-Nowak, D., Paine, M.J., Wolf, C.R., Tarasiuk, J., The role of bioreductive activation of doxorubicin in cytotoxic activity against leukaemia HL60-sensitive cell line and its multidrug-resistant sublines. (2005) Br. J. Cancer., 93, pp. 89-97
  • Eden, T.O., Pieters, R., Richards, S., Systematic review of the addition of vincristine plus steroid pulses in maintenance treatment for childhood acute lymphoblastic leukemia-an individual patient data meta-analysis involving 5,659 children. (2010) Br. J. Haematol., 149 (5), pp. 722-733
  • Cutts, S.M., Swift, L.P., Rephaeli, A., Nudelman, A., Phillips, D.R., Recent advances in understanding and exploiting the activation of anthracyclines by formaldehyde. (2005) Curr. Med. Chem. Anti-Cancer Agents, 5, pp. 431-447
  • Meininger, V., Binet, S., Chaineau, E., Fellous, A., In situ response to vinka alkaloids by microtubules in cultured post-implanted mouse embryos. (1990) Biol. Cell, 68 (1), pp. 21-29
  • Triesscheijn, M., Baas, P., Schellens, J.H., Stewart, F.A., Photodynamic therapy in oncology. (2006) Oncologist, 11 (9), pp. 1034-1044
  • Agostinis, P., Berg, K., Cengel, K.A., Foster, T.H., Girotti, A.W., Gollnick, S.O., Photodynamic therapy of cancer: an update (2011) CA Cancer J. Clin., 61 (4), pp. 250-281
  • Fukuda, H., Casas, A., Batlle, A., Aminolevulinic acid: from its unique biological function to its star role in photodynamic therapy. (2005) Int. J. Biochem. Cell Biol., 37, pp. 272-276
  • Krammer, B., Plaetzer, K., ALA and its clinical impact, from bench to bedside. (2008) Photochem. Photobiol. Sci., 7 (3), pp. 283-289. , Review
  • Li, W., Zhang, W.J., Ohnishi, K., Yamada, I., Ohno, R., Hashimoto, K., 5-Aminolaevulinic acid-mediated photodynamic therapy in multidrug resistant leukemia cells (2001) J. Photochem. Photobiol. B, 60 (2-3), pp. 79-86
  • Zimmermann, A., Walt, H., Haller, U., Baas, P., Klein, S.D., Effects of chlorinmediated photodynamic therapy combined with fluoropyrimidines in vitro and in a patient (2003) Cancer Chemother. Pharmacol., 51 (2), pp. 147-154
  • Xie, Q., Jia, L., Liu, Y.H., Wei, C.G., Synergetic anticancer effect of combined gemcitabine and photodynamic therapy on pancreatic cancer in vivo. (2009) World J. Gastroenterol., 15 (6), pp. 737-741
  • Lopez, E.L., Scolnik, M., Alvarez, E., Hajos, E., Modulatory activity of PSC 833 and cyclosporin-A in vincristine and doxorubicin-selected multidrug resistant murine leukemic cells. (2001) Leuk. Res., 25, pp. 85-93
  • Merlin, J.L., Azzi, S., Lignon, D., Ramacci, C., Zeghari, N., Guillemin, F., MTT assays allow quick and reliable measurement of the response of human tumour cells to photodynamic therapy. (1992) Eur. J. Cancer, 28, pp. 1452-1458
  • Paz, M.L., González Maglio, D.H., Weill, F.S., Bustamante, J., Leoni, J., Mitochondrial dysfunction and cellular stress progression after ultraviolet B irradiation in human keratinocytes (2008) Photodermatol. Photoimmunol. Photomed., 24 (3), pp. 115-122
  • García, M.G., Alaniz, L., Lopes, E.C., Blanco, G., Hajos, S.E., Alvarez, E., Inhibition of NF- kappaB activity by BAY 11-7082 increases apoptosis in multidrug resistant leukemic T-cell lines. (2005) Leuk. Res., 29 (12), pp. 1425-1434
  • Luksiene, Z., Eggen, I., Moan, J., Nesland, J.M., Peng, Q., Evaluation of protoporphyrin IX production, phototoxicity and cell death pathway induced by hexylester of 5-aminolevulinic acid in Reh and HPB-ALL cells (2001) Cancer Lett., 169 (1), pp. 33-39
  • Peng, Q., Warloe, T., Berg, K., Moan, J., Kongshaug, M., Giercksky, K.E., Nesland, J.M., 5-Aminolevulinic acid-based photodynamic therapy: clinical research and future challenges (1997) Cancer, 79, pp. 2282-2307
  • Chu, E.S., Wu, R.W., Yow, C.M., Wong, T.K., Chen, J.Y., The cytotoxic and genotoxic potential of 5-aminolevulinic acid on lymphocytes: a comet assay study. (2006) Cancer Chemother. Pharmacol., 58 (3), pp. 408-414
  • Chen, J.Y., Mak, N.Q., Cheung, N.H., Leung, R.N., Peng, Q., Endogenous production of protoporphyrin IX induced by 5-aminolevulinic acid in leukemia cells. (2001) Acta Pharmacol. Sin., 22 (2), pp. 163-168
  • Gaullier, J.M., Berg, K., Peng, Q., Anholt, H., Selbo, P.K., Ma, L.W., Moan, J., Use of 5-aminolevulinic acid esters to improve photodynamic therapy on cells in culture. (1997) Cancer Res., 57, pp. 1481-1486
  • Ren, Q.G., Wu, S.M., Peng, Q., Chen, J.Y., Comparison of 5-aminolevulinic acid and its hexyl ester mediated photodynamic action on human hepatoma cells (2002) Acta Biochem. Biophys. Sin., 34 (5), pp. 650-654
  • Diez, B., Ernst, G., Teijo, M.J., Batlle, A., Hajos, S., Fukuda, H., Combined Chemotherapy and ALA-based Photodynamic Therapy in leukemic murine cells. (2012) Leukemia Res., 36, pp. 1179-1184
  • Carter, W.O., Narayanan, P.K., Robinson, J.P., Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. (1994) J. Leukoc. Biol., 55, pp. 253-258
  • Diez, B., Cordo Russo, R., Teijo, M.J., Hajos, S., Batlle, A., Fukuda, H., Ros production by endogenously generated Protoporphyrin IX in murine leukemia cells (2009) Cell. Mol. Biol., (Noisy-le-grand), 55 (2), pp. 15-19
  • Gorin, N.C., Aegerter, P., Auvert, B., Meloni, G., Goldstone, A.H., Burnett, A., Autologous bone marrow transplantation for acute myelocytic leukemia in first remission: a European survey of the role of marrow purging. (1990) Blood, 75, pp. 1606-1614
  • Peters, W., Hamm, C., Baynes, R., Principles of bone marrow transplantation (2000) Cancer Medicine, 18 (67), pp. 890-910. , In: Bast Jr RC, Kufe DW, Pollock RE, editors. 5th edition Hamilton (ON) BC Decker; 2000
  • Casas, A., Fukuda, H., Riley, P.A., Batlle, A.M., del, C., Enhancement of aminolevulinic acid based photodynamic therapy by adriamycin. (1997) Cancer Lett., 121, pp. 105-113
  • Casas, A., Fukuda, H., Batlle, A.M., del, C., Potentiation of the 5-aminolevulinic acid-based photodynamic therapy with cyclophosphamide. (1998) Cancer Biochem. Biophys., 16, pp. 183-196
  • Sinha, A.K., Anand, S., Ortel, B.J., Chang, Y., Mai, Z., Hasan, T., Methotrexate used in combination with aminolaevulinic acid for photodynamic killing of prostate cancer cells. (2006) Br. J. Cancer, 95 (4), pp. 485-495
  • Peterson, C.M., Shiah, J.G., Sun, Y., Kopecková, P., Minko, T., Straight, R.C., HPMA copolymer delivery of chemotherapy and photodynamic therapy in ovarian cancer. (2003) Adv. Exp. Med. Biol., 519, pp. 101-123
  • Snyder, J.W., Greco, W.R., Bellnier, D.A., Vaughan, L., Henderson, B.W., Photodynamic therapy: a means to enhanced drug delivery to tumors. (2003) Cancer Res., 63 (23), pp. 8126-8131
  • Kirveliene, V., Grazeliene, G., Dabkeviciene, D., Micke, I., Kirvelis, D., Juodka, B., Schedule-dependent interaction between Doxorubicin and mTHPC-mediated photodynamic therapy in murine hepatoma in vitro and (2006) In vivo. Cancer Chemother. Pharmacol., 57 (1), pp. 65-72
  • Capella, M.A., Capella, L.S., A light in multidrug resistance: photodynamic treatment of multidrug-resistant tumors. (2003) J. Biomed. Sci., 10 (4), pp. 361-366. , Review
  • Teiten, M.H., Bezdetnaya, L., Merlin, J.L., Bour-Dill, C., Pauly, M.E., Dicato, M., Effect of meta-tetra(hydroxyphenyl)chlorin (mTHPC)-mediated photodynamic therapy on sensitive and multidrug-resistant human breast cancer cells (2001) J. Photochem. Photobiol. B, 62 (3), pp. 146-152
  • Tsai, T., Hong, R.L., Tsai, J.C., Lou, P.J., Ling, I.F., Chen, C.T., Effect of 5-aminolevulinic acid mediated photodynamic therapy on MCF-7 and MCF-7/ADR cells. (2004) Lasers Surg. Med., 34 (1), pp. 62-72
  • Feuerstein, T., Berkovitch-Luria, G., Nudelman, A., Rephaeli, A., Malik, Z., Modulating ALA-PDT efficacy of mutlidrug resistant MCF-7 breast cancer cells using ALA prodrug. (2011) Photochem. Photobiol. Sci., 10 (12), pp. 1926-1933
  • Canti, B., Nicolin, A., Cubeddu, R., Taroni, P., Bandieramonte, G., Valentini, G., Antitumor efficacy of the combination of photodynamic therapy and chemotherapy in murine tumors (1998) Cancer Lett., 125, pp. 39-44
  • Canti, G., Calastretti, A., Bevilacqua, A., Reddi, E., Palumbo, G., Nicolin, A., Combination of photodynamic therapy + immunotherapy + chemotherapy in murine leukemia. (2010) Neoplasma, 57 (2), pp. 184-188
  • Barcos, M., Lane, W., Gomez, G.A., Han, T., Freeman, A., Preisler, H., Henderson, E., An autopsy study of 1206 acute and chronic leukemias (1958 to 1982) (1987) Cancer., 60, pp. 827-837
  • Crazzolara, R., Kreczy, A., Mann, G., Heitger, A., Eibl, G., Fink, F.M., Möhle, R., Meister, B., High expression of the chemokine receptor CXCR4 predicts extramedullary organ infiltration in childhood acute lymphoblastic leukaemia. (2001) Br. J. Haematol., 115 (3), pp. 545-553

Citas:

---------- APA ----------
Diez, B., Hajos, S., Meiss, R., Ernst, G., Teijo, M.J., Batlle, A. & Fukuda, H. (2015) . In vitro and in vivo 5-aminolevulinic acid-based photodynamic therapy in sensitive ani drug resistant leukemic murine cells. Photodynamic Therapy: Fundamentals, Applications and Health Outcomes, 173-191.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816346_v_n_p173_Diez [ ]
---------- CHICAGO ----------
Diez, B., Hajos, S., Meiss, R., Ernst, G., Teijo, M.J., Batlle, A., et al. "In vitro and in vivo 5-aminolevulinic acid-based photodynamic therapy in sensitive ani drug resistant leukemic murine cells" . Photodynamic Therapy: Fundamentals, Applications and Health Outcomes (2015) : 173-191.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816346_v_n_p173_Diez [ ]
---------- MLA ----------
Diez, B., Hajos, S., Meiss, R., Ernst, G., Teijo, M.J., Batlle, A., et al. "In vitro and in vivo 5-aminolevulinic acid-based photodynamic therapy in sensitive ani drug resistant leukemic murine cells" . Photodynamic Therapy: Fundamentals, Applications and Health Outcomes, 2015, pp. 173-191.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816346_v_n_p173_Diez [ ]
---------- VANCOUVER ----------
Diez, B., Hajos, S., Meiss, R., Ernst, G., Teijo, M.J., Batlle, A., et al. In vitro and in vivo 5-aminolevulinic acid-based photodynamic therapy in sensitive ani drug resistant leukemic murine cells. Photodyn. Ther.: Fundam., Appl. and Health Outcomes. 2015:173-191.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816346_v_n_p173_Diez [ ]