Parte de libro

De'Nobili, M.D.; Curto, L.M.; Delfino, J.M.; Pérez, C.D.; Bernhardt, D.; Gerschenson, L.N.; Fissore, E.N.; Rojas, A.M. "Alginate utility in edible and non edible film development and the influence of its macromolecular structure in the antioxidant activity of a pharmaceutical/food interface" (2015) Alginic Acid: Chemical Structure, Uses and Health Benefits:119-169
Estamos trabajando para incorporar este artículo al repositorio

Abstract:

Edible films and coatings are mostly investigated as an interesting alternative for food packaging. Edible films habitually developed for food protection are very good barriers to gases but not to water vapor because polysaccharides and proteins have to be used for their development. Nowadays, there are many research works which look for decreasing film permeability to water vapor. Beyond this fact, edible films are much studied matrices since they can be also applied as a technological hurdle for food preservation because their microstructure can be used to carry, stabilize, localize the activity and control the release of food preservatives (antimicrobials, antioxidants) at interfaces. For non edible purposes, films can be also applied for wound dressings as drug delivery systems to improve wound healing. Also, to tissue engineering. Alginate polymers have long been used in the food and beverage industries as thickenners, gel- forming and colloidal stabilizing agents. Alginates are also used in the pharmaceutical industry as matrices for drug encapsulation, as substrates for cell culture, as binders for medical tablets and for many applications of controlled drug delivery. Alginic acid is a natural unbranched binary copolymer constituted by (1,4)-linked β-D-mannuronic acid (MM-block) and α-L-(1,4)-linked guluronic acid (GG-block), as well as by sequences of alternating β-D-mannuronic and α-L-guluronic acid (MG- and GM-blocks), producing different macromolecular structures of alginates. Physical and mechanical properties as well as biocompatibility of alginate materials are highly dependent on the relative content of L-guluronic to D-mannuronic acids. Calcium ions can replace in part the hydrogen bonding, zipping guluronate (but not mannuronate) chains together in an 'egg-box' conformation. A decrease in the swelling rate constant with elevated calcium concentration was determined. As a consequence, the release of embodied active compounds in alginate matrices will be also delayed, allowing these systems to be used in controlled release of drugs and food preservatives. This fact makes of alginic acid an interesting biopolymer for being applied to film development. This chapter reviews in recent literature, the utilization of alginates to the development of films applied to food and pharmaceutical formulation. Since it is generally observed that researchers rarely know and consider the composition of the alginate that they used for film development, a study where the influence of the alginate copolymer composition on the stability of the L- (+)-ascorbic acid supported in films is also reported. They were obtained for acting as controlled delivery systems for nutritional supplementation, therapy or antioxidant activity at interfaces. © 2015 by Nova Science Publishers, Inc. All rights reserved.

Registro:

Documento: Parte de libro
Título:Alginate utility in edible and non edible film development and the influence of its macromolecular structure in the antioxidant activity of a pharmaceutical/food interface
Autor:De'Nobili, M.D.; Curto, L.M.; Delfino, J.M.; Pérez, C.D.; Bernhardt, D.; Gerschenson, L.N.; Fissore, E.N.; Rojas, A.M.
Filiación:Departamento de Industrias, School of Natural and Exact Sciences (FCEN), University of Buenos Aires, Buenos Aires, Argentina
Department of Biological Chemistry, Institute of Biochemistry and Biophysics - IQUIFIB (CONICET), University of Buenos Aires, Buenos Aires, Argentina
Institute of Food Technology (ITA), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires Province, Argentina
National Scientific and Technical Research Council-Argentina (CONICET), Argentina
Palabras clave:Alginate edible films; Antioxidant interface; Ascorbic acid hydrolysis; Blends and composites; Copolymer composition; Water; Antioxidants; Ascorbic acid; Beverages; Biocompatibility; Biomechanics; Calcium; Cell culture; Encapsulation; Food preservation; Food preservatives; Gas permeable membranes; Hydrogen bonds; Macromolecules; mHealth; Rate constants; Sodium alginate; Targeted drug delivery; Tissue engineering; Water; Water vapor; Acid hydrolysis; Copolymer compositions; Edible films; Food and beverage industry; Macromolecular structures; Pharmaceutical formulation; Pharmaceutical industry; Physical and mechanical properties; Controlled drug delivery
Año:2015
Página de inicio:119
Página de fin:169
Título revista:Alginic Acid: Chemical Structure, Uses and Health Benefits
Título revista abreviado:Alginic Acid: Chemical Structure, Uses and Health Benefits
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816346_v_n_p119_DeNobili

Referencias:

  • Abdollahi, M., Alboofetileh, M., Rezaei, M., Behrooz, R., Comparing physico- mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. (2013) Food Hydrocolloids, 32, pp. 416-424
  • Aoyama, N., Hayakawa, I., Akiba, N., Minakuchi, S., Effect of high-molecular- weight sodium alginate on the viscosity and characteristics of alginate impression materials. (2007) Prosthodont. Res. Pract., 6, pp. 239-245
  • Standard Test Method for Tensile Properties of Thin Plastic Sheeting, Method D 882-95. (1995) American Society for Testing and Materials, , Philadelphia
  • Standard Test Method for Tensile Properties of Thin Plastic Sheeting, Annual Book of ASTM Standards (2001) American Society for Testing and Materials, pp. 162-170. , Philadelphia, PA
  • Augst, A.D., Kong, H.J., Mooney, D.J., Alginate hydrogels as biomaterials. (2006) Macromolecular Bioscience, 6 (8), pp. 623-633
  • Benavides, S., Villalobos-Carvajal, R., Reyes, J.E., Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. (2012) Journal of Food Engineering, 110, pp. 232-239
  • Braccini, I., Pérez, S., Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. (2001) Biomacromolecules, 2, pp. 1089-1096
  • Brownlee, I.A., The physiological roles of dietary fibre. (2011) Food Hydrocolloids, 25, pp. 238-250
  • Chandrasekaran, R., Puigjaner, L.C., Joyce, K.L., Arnott, S., Cation interactions in gellan: an X-ray study of the potassium salt. (1988) Carbohydrate Res., 181, pp. 23-40
  • Chaplin, M., Water structure and science: Alginate. (2014), http://www1.lsbu.ac.uk/water/alginate.html, Available at; Davidovich-Pinhas, M., Bianco-Peled, H., A quantitative analysis of alginate swelling. (2010) Carbohydrate Polymers, 79, pp. 1020-1027
  • Davidson, I.W., Sutherland, I.W., Lawson, C.J., Localization of O-Acetyl Groups of Bacterial Alginate. (1977) J. General Microb., 98, pp. 603-606
  • De'Nobili, M.D., Pérez, C.D., Navarro, D.A., Stortz, C.A., Rojas, A.M., Hydrolytic stability of L-(+)-ascorbic acid in low methoxyl pectin films with potential antioxidant activity at food interfaces. (2011) Food and Bioprocess Technology, 6, pp. 186-197
  • De'Nobili, M.D., Curto, L.M., Delfino, J.M., Soria, M., Fissore, E.N., Rojas, A.M., Performance of alginate films for retention of L-(+)-ascorbic acid. (2013) International Journal of Pharmaceutics, 450, pp. 95-103
  • Donati, I., Gamini, A., Skjåk-Bræk, G., Vetere, A., Campa, C., Coslovi, A., Paoletti, S., Determination of the diadic composition of alginate by means of circular dichroism: a fast and accurate improved method. (2003) Carbohydrate Res., 338, pp. 1139-1142
  • Dong, X.M., Revol, J.F., Gray, D.G., Effect of microcrystalline preparation conditions on the formation of colloid crystals of cellulose. (1998) Cellulose, 5, pp. 19-32
  • Dong, Z., Wang, Q., Du, Y., Alginate/gelatin blend films and their properties for drug controlled release. (2006) J. Membrane Science, 280, pp. 37-44
  • Edstrom, R.D., A calorimetric method for the determination of mucopolysaccharides and other acidic polymers. (1969) Analyt. Biochem., 29, pp. 421-432
  • Famá, L., Rojas, A.M., Goyanes, S., Gerschenson, L.N., Mechanical properties of tapioca-starch edible films containing sorbates. (2005) Lebensm.-Wiss. U.-Technol., 38, pp. 631-639
  • Fan, Y., Xu, Y., Wang, D., Zhang, L., Sun, J., Sun, L., Zhang, B., Effect of alginate coating combined with yeast antagonist on strawberry (Fragaria×ananassa) preservation quality. (2009) Postharvest Biology and Technology, 53, pp. 84-90
  • Fang, Y., Al-Assaf, S., Phillips, G.O., Nishinari, K., Funami, T., Williams, P.A., Binding behavior of calcium to polyuronates: Comparison of pectin with alginate. (2008) Carbohydrate Polym., 72, pp. 334-341
  • Ferry, J.D., Viscoelastic properties of polymers (1980), (2nd ed.). New York: John Wiley & Sons, USA; Fox, T.G., Flory, P.J., Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. (1950) Journal of Applied Physics, 21 (6), pp. 581-591
  • Galus, S., Lenart, A., Development and characterization of composite edible films based on sodium alginate and pectin. (2013) Journal of Food Engineering, 115, pp. 459-465
  • Gomez, A., Wrobel, K., Wrobel, K., Kazunori, S., Tzu, T.W., Lead Ion Uptake By Sodium Alginate And Calcium Alginate Film: A Comparison Study. 2012 International Congress on Informatics (2012) Environment, Energy and Applications-IEEA 2012. IPCSIT, vol.38, , IACSIT Press, Singapore
  • Greenspan, L., Humidity fixed points of binary saturated aqueous solutions. (1977) J. Res. Nat. Bur. Stand., 81 (1), pp. 89-96
  • Gu, C.-H., Wang, J.-J., Yu, Y., Sun, H., Shuai, N., Wei, B., Biodegradable multilayer barrier films based on alginate/polyethyleneimine and biaxially oriented poly(lactic acid). (2013) Carbohydrate Polymers, 92, pp. 1579-1585
  • Gu, Y., Wang, Y.-N., Wei, J., Tang, C.Y., Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules. (2013) Water Research, 47, pp. 1867-1874
  • Han, J.H., New technologies in food packaging: overview. (2005) Innovations in Food Packaging, p. 9. , Jung H. Han Editor, Chapter 1
  • Harper, B.A., Barbut, S., Lim, L.-T., Marcone, M.F., Characterization of 'wet' alginate and composite films containing gelatin, whey or soy protein. (2013) Food Research International, 52, pp. 452-459
  • Hatakeyama, H., Hatakeyama, T., Interaction between water and hydrophilic polymers. (1998) Therm. Acta, 308, pp. 3-22
  • Huq, T., Salmieri, S., Khan, A., Khan, R.A., Le Tien, C., Riedl, B., Fraschini, C., Lacroix, M., Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. (2012) Carbohydrate Polymers, 90, pp. 1757-1763
  • Immirzi, B., Santagata, G., Vox, G., Schettini, E., Preparation, characterisation and field testing of a biodegradable sodium alginate-based spray mulch. (2009) Biosystems Engineering, 102, pp. 461-472
  • Ionita, M., Pandele, M.A., Iovu, H., Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties. (2013) Carbohydrate Polymers, 94, pp. 339-344
  • Joel, A., Indictor, N., Hanlan, J.F., Baer, N.S., The measurement and significance of pH in paper conservation. (1972) Bulletin of the American Group. Int. Inst. Conserv. Hist. Art. Works, 12 (2), pp. 119-125
  • Jost, V., Kobsik, K., Schmid, M., Noller, K., Influence of plasticiser on the barrier, mechanical and grease resistance properties of alginate cast films. (2014) Carbohydrate Polymers, 110, pp. 309-319
  • Jothisaraswathi, S., Babu, B., Rengasamy, R., Seasonal studies on alginate and its composition II: Turbinaria conoides (J.Ag.) Kütz. (Fucales, Phaeophyceae). (2006) J. Appl. Phycol., 18, pp. 161-166
  • Khuathan, N., Pongjanyakul, T., Modification of quaternary polymethacrylate films using sodiumalginate: Film characterization and drug permeability. (2014) International Journal of Pharmaceutics, 460, pp. 63-72
  • Khwaldia, K., Perez, C., Banon, S., Desobry, S., Hardy, J., Milk proteins for edible films and coatings. (2004) J. Crit. ReV. Food Sci. Nutr., 44 (4), pp. 239-251
  • Klöck, G., Pfefferrnann, A., Ryser, C., Gröhn, P., Kuttler, B., Hahn, H.J., Zimmermann, U., Biocompatibility of mannuronic acid-rich alginates. (1997) Biomater., 18, pp. 707-713
  • Koch, C.A., Akhave, J.R., Bharadwaj, R.K., Layer by layer assembled nanocomposite barrier coatings. (2003) Google Patents.
  • Kohn, R., Ion binding on polyuronates. Alginate and pectin. (1975) Pure Appl. Chem., 42, pp. 371-397
  • Kong, H.J., Kaigler, D., Kim, K., Mooney, D.J., Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. (2004) Biomacromolecule, 5, pp. 1720-1727
  • Krause Bierhalz, A.C., Altenhofen da Silva, M., Kieckbusch, T.G., Natamycin release from alginate/pectin films for food packaging applications. (2012) Journal of Food Engineering, 110, pp. 18-25
  • Kurata, T., Sakurai, Y., Degradation of L-ascorbic acid and mechanism of nonenzymic browning reaction. (1967) Part I. Agric. Biol. Chem., 31, pp. 101-105
  • Lagoa, R., Rodrigues, J.R., Evaluation of dry protonated calcium alginate beads for biosorption applications and studies of lead uptake. (2007) Applied Biochemistry and Biotechnology, 143 (2), pp. 115-128
  • Lee, K.Y., Mooney, D.J., Alginate: Properties and biomedical applications. (2012) Prog. Polym. Sci., 37, pp. 106-126
  • León, P.G., Rojas, A.M., Gellan gum films as carriers of L-(+)-ascorbic acid. (2007) Food Res. Int., 40, pp. 565-575
  • Liakos, I., Rizzello, L., Bayer, I.S., Pompa, P.P., Cingolani, R., Athanassiou, A., Controlled antiseptic release by alginate polymer films and beads. (2013) Carbohydrate Polymers, 92, pp. 176-183
  • Liakos, I., Rizzello, L., Scurr, D.J., Pompa, P.P., Bayer, I.S., Athanassiou, A., All- natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. (2014) International Journal of Pharmaceutics, 463, pp. 137-145
  • Liu, A.D., Berglund, L.A., Clay nanopaper composites of nacre-like structure based on montmorrilonite and cellulose nanofibers: Improvements due to chitosan addition. (2012) Carbohydrate Polymers, 87 (1), pp. 53-60
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the Folin phenol reagent. (1951) J. Biol. Chem., 193, pp. 265-275
  • Luo, Y., Wang, Q., Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. (2014) International Journal of Biological Macromolecules, 64, pp. 353-367
  • Maizura, M., Fazilah, A., Norziah, M.H., Karim, A.A., Antibacterial activity of modified sago starch-alginate based edible film incorporated with lemongrass (Cymbopogon citratus) oil. (2008) International Food Research Journal, 15 (2), pp. 233-236
  • Malinconico, M., Immirzi, B., Santagata, G., Schettini, E., Vox, G., Scarascia Mugnozza, G., An overview on innovative biodegradable materials for agricultural applications. (2008) Progress in polymer degradation and stability research., pp. 69-114. , In: Moeller HW, editor, NY, USA: Nova Science Publishers, Inc.; Chapter 3
  • McHugh, J., 'Production, Properties and Uses of Alginates'. (1987), Department of Chemistry, University College. University of New South Wales. Australian Defence Force Academy. Campbell, ACT 2600, Australia; Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S., The structure of suspended graphene sheets. (2007) Nature, 446, pp. 60-63
  • Murillo-Álvarez, J.I., Hernández-Carmona, G., Monomer composition and sequence of sodium alginate extracted at pilot plant scale from three commercially important seaweeds from Mexico. (2007) Journal of Applied Phycology, 19, pp. 545-548
  • Olivas, G.I., Barbosa-Cánovas, G.V., Alginate--calcium films: Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. (2008) LWT, 41, pp. 359-366
  • Pavlath, A.E., Gossett, C., Camirand, W., Robertson, G.H., Ionomeric Films of Alginic Acid. (1999) Journal of Food Science, 64 (1), pp. 61-63
  • Pawar, H.V., Tetteh, J., Boateng, J.S., Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. (2013) Colloids and Surfaces B: Biointerfaces, 102, pp. 102-110
  • Pawar, S.N., Edgar, K.J., Alginate derivatization: a review of chemistry, properties and applications. (2012) Biomat., 33, pp. 3279-3305
  • Penman, A., Sanderson, G.R., A method for the determination of uronic acid sequence in alginates. (1972) Carbohydrate Research, 25 (2), pp. 273-282
  • Pereira, R., Carvalho, A., Vaz, D.C., Gil, M.H., Mendes, A., Bártolo, P., Development of novel alginate based hydrogel films for wound healing applications. (2013) International Journal of Biological Macromolecules, 52, pp. 221-230
  • Pérez, C.D., Flores, S.K., Marangoni, A.G., Gerschenson, L.N., Rojas, A.M., Development of a high methoxyl-pectin edible film for retention of l-(+)-ascorbic acid. (2009) J. Agric. Food Chem., 57, pp. 6844-6855
  • Ping, Z.H., Nguyen, Q.T., Chen, S.M., Zhou, J.Q., Ding, Y.D., States of water in different hydrophilic polymers-DSC and FTIR studies. (2001) Polym., 42, pp. 8461-8467
  • Pongjanyakul, T., Alginate--magnesium aluminum silicate films: Importance of alginate block structures. (2009) International Journal of Pharmaceutics, 365, pp. 100-108
  • Pranoto, Y., Salokhe, V.M., Rakshit, S.K., Physical and antibacterial properties of alginate-based edible film incorporated with garlic oil. (2005) Food Research International, 38, pp. 267-272
  • Rachocki, A., Pogorzelec-Glaser, K., Pawlaczyk, C., Tritt-Goc, J., Morphology, molecular dynamics and electric conductivity of carbohydrate polymer films based on alginic acid and benzimidazole. (2011) Carbohydrate Research, 346, pp. 2718-2726
  • Restuccia, D., Spizzirri, U.G., Parisi, O.I., Cirillo, G., Curcio, M., Iemma, F., Puoci, F., Picci, N., New EU regulation aspects and global market of active and intelligent packaging for food industry applications. (2010) Food Control, 21, pp. 1425-1435
  • Rhim, J.-W., Physical and mechanical properties ofwater resistant sodium alginate films. (2004) Lebensm.-Wiss. u.-Technol. (LWT), 37, pp. 323-330
  • Roger, S., Bee, A., Balnois, E., Bourmaud, A., Le Deit, H., Grohens, Y., Cabuil, V., Physical and mechanical properties of alginate films containing calcium cations and ferrofluids. (2004) Fifth International Conference Polymer-Solvent Complexes & Intercalates., , July 11-14, Lorient, France
  • Rojas-Graü, M.A., Avena-Bustillos, R.J., Olsen, C., Friedman, M., Henika, P.R., Martín-Belloso, O., Pan, Z., McHugh, T.H., Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate--apple puree edible films. (2007) Journal of Food Engineering, 81, pp. 634-641
  • Rojas-Graü, M.A., Raybaudi-Massilia, R.M., Soliva-Fortuny, R.C., Avena-Bustillos, R.J., McHugh, T.H., Martín-Belloso, O., Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. (2007) Postharvest Biology and Technology, 45, pp. 254-264
  • Samir, M.A.S.A., Alloin, F., Dufresne, A., Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. (2005) Biomacromolecules, 6, pp. 612-626
  • Schettini, E., Santagata, G., Malinconico, M., Immirzi, B., Mugnozza, G.S., Vox, G., Recycled wastes of tomato and hemp fibres for biodegradable pots: Physico- chemical characterization and field performance. (2013) Resources, Conservation and Recycling, 70, pp. 9-19
  • Shilpa, A., Agrawal, S.S., Ray, A.R., Controlled delivery of drugs from alginate matrix. Journal of Macromolecular Science (2003) Part C: Polymer Reviews, 43, pp. 187-221
  • Simpson, N.E., Stabler, C.L., Simpson, C.P., Sambanis, A., Constantinidis, I., The role of the CaCl2--guluronic acid interaction on alginate encapsulated βTC3 cells. (2004) Biomat., 25, pp. 2603-2610
  • Sirviö, J.A., Kolehmainen, A., Liimatainen, H., Niinimäki, J., Hormi, O.E.O., Biocomposite cellulose-alginate films: Promising packaging materials. (2014) Food Chemistry, 151, pp. 343-351
  • Srisuwan, Y., Baimark, Y., Preparation of biodegradable silk fibroin/alginate blend films for controlled release of antimicrobial drugs. Advances in Materials Science and Engineering (open access), volume 2013, article ID 412458, 6 pages. (2013) Hindawi Publishing Corporation., , http://dx.doi.org/10.1155/2013/412458, Available at
  • Stabler, C., Wilks, K., Sambanis, A., Constantinidis, I., The effects of alginate composition on encapsulated βTC3 cells. (2001) Biomat., 22, pp. 1301-1310
  • Sun, L., Fugetsu, B., Graphene oxide captured for green use: Influence on the structures of calcium alginate and macroporous alginic beads and their application to aqueous removal of acridine orange. (2014) Chemical Engineering Journal, 240, pp. 565-573
  • Suppakul, P., Miltz, J., Sonneveld, K., Bigger, S.W., Active packaging technologies with an emphasis on antimicrobial packaging and its applications. (2003) J. Food Science, 68 (2), pp. 408-420
  • Szabó, B., Kállai, N., Tóth, G., Hetényi, G., Zelkó, R., Drug release profiles and microstructural characterization of cast and freeze dried vitamin B12 buccal films by positron annihilation lifetime spectroscopy. (2014) Journal of Pharmaceutical and Biomedical Analysis, 89, pp. 83-87
  • Tapia, M.S., Rojas-Graü, M.A., Rodríguez, E.J., Ramírez, J., Carmona, A., Martín-Belloso, O., Alginate- and gellan-based edible films for probiotic coatings on fresh-cut fruits. (2007) Journal of Food Science, 72 (4), pp. E190-E196
  • Tezcan, F., Günister, E., Özen, G., Bedia Erim, F., Biocomposite films based on alginate and organically modified clay. (2012) International Journal of Biological Macromolecules, 50, pp. 1165-1168
  • Tian, K., Xie, C., Xia, X., Chitosan/alginate multilayer film for controlled release of IDM on Cu/LDPE composite intrauterine devices. (2013) Colloids and Surfaces B: Biointerfaces, 109, pp. 82-89
  • Torger, B., Müller, M., In situ-ATR--FTIR analysis on the uptake and release of streptomycin from polyelectrolyte complex layers. (2013) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 104, pp. 546-553
  • Vu, C.H.T., Won, K., Novel water-resistant UV-activated oxygen indicator for intelligent food packaging. (2013) Food Chemistry, 140, pp. 52-56
  • Wang, Z., Zhang, X., Gu, J., Yang, H., Nie, J., Ma, G., Electrodeposition of alginate/chitosan layer-by-layer composite coatings on titanium substrates. (2014) Carbohydrate Polymers, 103, pp. 38-45
  • Yin, Y.L., Prudhomme, P.K., Donnan equilibrium of mobile ions in polyelectrolyte gels. (1992) Polym. Prepr., 32 (3), pp. 507-508
  • Zhang, L., Webster, T.J., Effects of chemically modified nanostructured PLGA on functioning of lung and breast cancer cells. (2013) International Journal of Nanomedicine, pp. 1907-1919
  • Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Graphene and graphene oxide: Synthesis, properties, and applications. (2010) Advanced Materials, 22 (35), pp. 3906-3924

Citas:

---------- APA ----------
De'Nobili, M.D., Curto, L.M., Delfino, J.M., Pérez, C.D., Bernhardt, D., Gerschenson, L.N., Fissore, E.N.,..., Rojas, A.M. (2015) . Alginate utility in edible and non edible film development and the influence of its macromolecular structure in the antioxidant activity of a pharmaceutical/food interface. Alginic Acid: Chemical Structure, Uses and Health Benefits, 119-169.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816346_v_n_p119_DeNobili [ ]
---------- CHICAGO ----------
De'Nobili, M.D., Curto, L.M., Delfino, J.M., Pérez, C.D., Bernhardt, D., Gerschenson, L.N., et al. "Alginate utility in edible and non edible film development and the influence of its macromolecular structure in the antioxidant activity of a pharmaceutical/food interface" . Alginic Acid: Chemical Structure, Uses and Health Benefits (2015) : 119-169.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816346_v_n_p119_DeNobili [ ]
---------- MLA ----------
De'Nobili, M.D., Curto, L.M., Delfino, J.M., Pérez, C.D., Bernhardt, D., Gerschenson, L.N., et al. "Alginate utility in edible and non edible film development and the influence of its macromolecular structure in the antioxidant activity of a pharmaceutical/food interface" . Alginic Acid: Chemical Structure, Uses and Health Benefits, 2015, pp. 119-169.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816346_v_n_p119_DeNobili [ ]
---------- VANCOUVER ----------
De'Nobili, M.D., Curto, L.M., Delfino, J.M., Pérez, C.D., Bernhardt, D., Gerschenson, L.N., et al. Alginate utility in edible and non edible film development and the influence of its macromolecular structure in the antioxidant activity of a pharmaceutical/food interface. Alginic Acid: Chemical Structure, Uses and Health Benefits. 2015:119-169.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816346_v_n_p119_DeNobili [ ]