Parte de libro

Estamos trabajando para incorporar este artículo al repositorio

Abstract:

Within biodegradable natural polymers, thermoplastic materials based on polylactic acid (PLA) have been studied over the last decades for their possible use in different kinds of industries such as packaging, textile, biomedicine, engineering, etc. However, PLA has certain disadvantages compared with synthetic materials, in particular low elongation at break and fairly fragility. To solve this problem some investigations have attempted to incorporate different micro/nano size particles in order to reinforce matrices developed by this polymer. Carbon nanotubes (CNT) are one of the fillers with high potential for industrial use; however, their use as reinforcing material has an important difficulty associated with their poor dispersion and bad interfacial interaction with polymer matrices when they are in their neat state. In this way, different types of treatment of carbon nanotubes have been studied in order to improve their dispersion in a PLA matrix. A review of some of those investigations will be presented in this chapter. In particular, the discussion will be focused on the description of different functionalization methods that were used to obtain those objectives. A comparative analysis of some covalent and non-covalent techniques and the variables involved in these processes will be performed. Factors affecting physical properties such as structure, crystallinity and mechanical behavior of PLA- functionalized CNT nanocomposites will be discussed. The most important results on mechanical, dynamic and quasi static behavior of these materials will be analyzed in separate sections. Finally, a conclusion about the importance of the functionalization of carbon nanotubes to improve the physical properties of PLA based composites will be presented. © 2014 Nova Science Publishers, Inc.

Registro:

Documento: Parte de libro
Título:Nanocomposites based on polylactic acid (PLA) Reinforced by functionalized carbon nanotubes (CNT)
Autor:Famá, L.
Filiación:LPMC, Dept of Physics, Faculty of Ciencias Exactas y Naturales and IFIBA-CONICET, University of Buenos Aires, Pab. 1, (C1428EHA), Buenos Aires, Argentina
Palabras clave:Carbon nanotubes; Functionalization techniques; Nanocomposites; Physical properties; Polylactic acid; Biodegradable polymers; Dispersions; Nanocomposites; Nanotubes; Natural polymers; Packaging materials; Physical properties; Polyesters; Reinforced plastics; Reinforcement; Textile industry; Yarn; Comparative analysis; Elongation at break; Functionalizations; Functionalized carbon nanotubes; Interfacial interaction; Poly lactic acid; Reinforcing materials; Thermoplastic materials; Carbon nanotubes
Año:2014
Página de inicio:1
Página de fin:36
Título revista:Polymer-Matrix Composites: Types, Applications and Performance
Título revista abreviado:Polym.-Matrix Compos.: Types, Appl. and Perform.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816332_v_n_p1_Fama

Referencias:

  • Famá, L., Goyanes, S., Gerschenson, L., Influence of storage time at room temperature on the physicochemical properties of cassava starch films (2007) Carbohydr. Polym, 70, p. 265
  • García, N.L., Famá, L., Dufresne, A., Aranguren, M., Goyanes, S., A comparison between the physico-chemical properties of tuber and cereal starches (2009) Food Res. Int, 42, p. 976
  • Siqueira, G., Bras, J., Dufresne, A., A: Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites (2009) Biomacromolecules, 10, p. 425
  • Seligra, P., Nuevo, F., Lamanna, M., Famá, L., Covalent grafting of carbon nanotubes to PLA in order to improve compatibility (2013) Compos. Part B-Eng, 46, p. 61
  • Rudnik, E., Compostable polymer properties and packaging applications (2013) Plastic Films in Food Packaging, p. 217. , S. Ebnesajjad, (Eds.), Elsevier: Pennsylvania, US
  • Zhang, Z., Ortiz, O., Goyal, R., Kohn, J., Biodegradable polymers (2014) Principles of Tissue Engineering, p. 441. , R. Lanza, R. Langer, J.P. Vacanti, (Eds.), Academic Press: US
  • Yu, L., Dean, K., Polymer blends and composites from renewable resources (2006) Prog. Polym. Sci, 31, p. 576
  • Auras, R., Harte, B., Selke, S., An overview of polylactides as packaging materials (2004) Macromol. Biosci, 4, p. 835
  • Zhang, J.F., Sun, X., Poly(lactic acid) based bioplastics (2005) Biodegradable Polymers for Industrial Applications, p. 251. , R. Smith, (Eds.), Woodhead Publishing Limited: London, UK
  • Doi, Y., Steinbuchel, A., (2002) Biopolymers, Polyesters III-Applications and Commercial Products, 4, p. 410. , Wiley-VCH: Berlin, DE
  • Domenek, S., Courgneau, C., Ducruet, V., Characteristics and applications of poly (lactide) (2011) Biopolymers: Biomedical and Environmental Applications, p. 183. , S. Kalia, L. Avérous, (Eds.), Wiley-Scrivener: New York, US
  • Harrison, B.S., Atala, A., Carbon nanotube applications for tissue engineering (2007) Biomaterials, 28, p. 344
  • Wu, C.-S., Liao, H.-T., Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites (2007) Polymer, 48, p. 4449
  • Sorrentino, A., Gorrasi, G., Vittoria, V., Potential perspectives of bionanocomposites for food packaging applications (2007) Trends Food Sci. Technol, 18, p. 84
  • Hansen, N.M., Plackett, D., Sustainable films and coatings from hemicelluloses: A review (2008) Biomacromolecules, 9, p. 1494
  • Petinakis, E., Liu, X., Yu, L., Way, C., Sangwan, P., Dean, K., Bateman, S., Edward, G., Biodegradation and thermal decomposition of poly(lactic acid)-based materials reinforced by hydrophilic fillers (2010) Polym. Degrad. Stabil, 95, p. 1704
  • Song, W., Zheng, Z., Tang, W., Wang, X., A facile approach to covalently functionalized carbon nanotubes with biocompatible polymer (2007) Polymer, 48, p. 3658
  • Sundqvist, P., Garcia-Vidal, F.J., Flores, F., Moreno, M.M., Navarro, C.G., Bunch, J.S., Herrero, J.G., Voltage and length-dependent phase diagram of the electronic transport in carbon nanotubes (2007) Nano Lett, 7, p. 2568
  • Wisse, E., Govaert, L.E., Meijer, H.E., Meijer, E.W., Unusual tuning of mechanical properties of thermoplastic elastomers using supramolecular fillers (2006) Macromolecules, 39, p. 7425
  • So, H.H., Cho, J.W., Sahoo, N.G., Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites (2007) European Polym. J, 43, p. 3750
  • Zilli, D., Goyanes, S., Escobar, M.M., Chiliotte, C., Bekeris, V., Cukierman, A.L., Rubiolo, G.H., Comparative analysis of electric, magnetic, and mechanical properties of epoxy matrix composites with different contents of multiple walled carbon nanotubes (2007) Polym. Composite, 28, p. 612
  • Choudhary, V., Gupta, A., Polymer/carbon nanotube nanocomposites (2011) Carbon Nanotubes-Polymer Nanocomposites, p. 65. , S. Yellampalli, (Eds.), Intech: Rijeka, HR
  • Suhr, J., Zhang, W., Ajayan, P., Koratkar, N., Temperature activated interfacial friction damping in carbon nanotube polymer composites (2006) Nano Lett, 6, p. 219
  • Kim, J.Y., Han, S., Hong, S., Effect of modified carbon nanotube on the properties of aromatic polyester nanocomposites (2008) Polymer, 49, p. 3335
  • Lyons, K., Nanotechnology: Transforming food and the environment (2010) Food First Backgrounder, 16, p. 1
  • Avérous, L., Boquillon, N., Biocomposites based on plasticized starch: thermal and mechanical behaviours (2004) Carbohydr. Polym, 56, p. 111
  • Wang, Y., Rakotonirainy, M., Papua, W., Thermal behavior of Zeína-base biodegradable film (2003) Starch/Stärke, 55, p. 25
  • http://www.ceresana.com/en/market-studies/plastics/bioplastics/; Södergård, A., Stolt, M., Properties of lactic acid based polymers and their correlation with composition (2002) Prog. Polym. Sci, 27, p. 1123
  • Middleton, J.C., Tipton, A.J., Synthetic biodegradable polymers as orthopedic devices (2000) Biomaterial, 21, p. 2335
  • Fiore, G., Jing, F., Young, V., Jr., Cramer, C., Hillmyer, M., High Tg aliphatic polyestersby the polymerization of spirolactide derivatives (2010) Polym. Chem, 1, p. 870
  • Garlotta, D., A literature review of poly(lactic acid) (2001) J. Polym. Environ, 9, p. 63
  • http://www.eis.uva.es/~macromol/curso08-09/pla/Pag%20web/acido%20polilactico.html; Avérous, L., Syntesis, properties, environmental and biomedical applications of polylactic acid (2013) Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications, p. 171. , S. Ebnesajjad, (Eds.), Wiley & Srivener Publishing: Oxford, UK
  • Suzuki, S., Ikada, Y., Medical applications (2010) Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications, p. 443. , R. Auras, L.-T. Lim, S. Selke, H. Tsuji, (Eds.), Wiley & Sons: New York, US
  • Ramakrishna, S., Mayer, J., Wintermantel, E., Leong, K.W., Biomedical applications of polymer composite materials: A review (2001) Compos. Sci. Technol, 61, p. 1189
  • http://www.natureworkllc.com; http://www.natureworksllc.com/Product-and-Applications/Fresh-Food-Packaging.aspx; Sin, L.T., Rahmat, A.R., Rahman, W.A., Applications of poly(lactic acid) (2013) Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications, p. 55. , S. Ebnesajjad, (Eds.), Wiley & Srivener Publishing: Oxford, UK
  • http://www.natureworksllc.com/Product-and-Applications/Films.aspx; Lu, X., Chen, Z.X., Curved pi-conjugation, aromaticity, and the related chemistry of small fullerenes (< C-60) and single-walled carbon nanotubes (2005) Chem. Rev, 105, p. 3643
  • Ajayan, P.M., Nanotubes from carbon (1999) Chem. Rev, 99, p. 1787
  • Baughman, R.H., Zakhidov, A.A., de Heer, W.A.A., Carbon nanotubes-the route toward applications (2002) Sci, 279, p. 787
  • Komarov, F.F., Mironov, A.M., Carbon nanotebes: Present and future, Phys (2004) Chem. Solid State, 5, p. 411
  • Iijima, S., Helical microtubules of graphitic carbon (1991) Nature, 354, p. 56
  • Moniruzzaman, M., Winey, K.I., Polymer nanocomposites containing carbon nanotubes (2006) Macromolecules, 39, p. 5194
  • Awasthi, K., Srivastava, A., Srivastava, O.N., Ballmilled carbon and hydrogen storage (2005) J. Nanosci. Nanotechnol, 5, p. 1616
  • Sinha, N., Yeow, J.T.-W., Carbon nanotubes for biomedical applications (2005) IEEE Trans. Nanobiosci, 4, p. 180
  • Goyanes, S., Bernal, C., Famá, L., Application of Carbon Nanotubes (CNTs) in the Development of Nanocomposites Based on Biodegradable Polymers (2013) Carbon Nanotubes: Synthesis and Properties, p. 157. , A.K. Mishra, (Eds.), Nova publisher: Hardcover, US
  • Baughman, R.H., Cui, C.X., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Kertesz, M., Carbon nanotube actuators (1999) Sci, 284, p. 1340
  • Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C., (1999) Science of Fullerenes and Carbon Nanotubes, p. 965. , Academic Press: San Diego, CA
  • Harris, P.J., (1999) Carbon Nanotube and Related Structures. New Materials for the 21st Century, p. 287. , Cambridge University Press: Cambridge, EN
  • Uchida, T., Kumar, S., Single wall carbon nanotube dispersion and exfoliation in polymers (2005) J. Appl. Polym. Sci, 98, p. 985
  • Louri, O., Wagner, H.D., Transmission electron micros-copy observations of fracture of single-wall carbon nanotubes under axial tension (1998) Appl. Phys. Lett, 73, p. 3527
  • Coleman, J., Khan, U., Blau, W., Gunko, Y., Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites (2006) Carbon, 44, p. 1624
  • Matayabas, J.C., Turner, S.R., Nanocomposite technology for enhancing the gas barrier of polyethylene terephthalate (2000) Polymer-Clay Nanocomposites, p. 207. , T.J. Pinnavaia, G.W. Beall, (Eds.), Wiley & sons: New York, US
  • Sung, Y.T., Kum, C.K., Lee, H.S., Byon, N.S., Yoon, H.G., Kim, W.N., Dynamic mechanical and morphological properties of polycarbonate/multi-walled carbon nanotube composites (2005) Polymer, 46, p. 5656
  • De Azeredo, H.M., Nanocomposites for food packaging applications (2009) Food Res. Int, 42, p. 1240
  • Bose, S., Khare, R.S., Moldenaers, P., Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: A critical review (2010) Polymer, 51, p. 975
  • Zapata-Solvas, E., Gomez-García, D., Poyato, R., Lee, Z., Castillo-Rodroguez, M., Dominguez-Rodriguez, A., Radmilovic, V., Padrure, N.P., Mircrostructural effects on the creep deformation alimuna/single-wall carbón nanotubes composites (2010) Am. Ceram. Soc, 59, p. 1464
  • Dresselhaus, M., Dresselhaus, G., Avorius, P., (2001) Carbon nanotubes: synthesis structure, properties and applications, p. 448. , Springer: US
  • Nuriel, S., Liu, L., Barber, A.H., Wagner, H.D., Direct measurement of multiwall nanotube surface tension (2005) Chem. Phys. Lett, 404, p. 263
  • Qian, D., Dickey, E.C., Andrews, R., Rantell, T., Load transfer and deformation mechan-isms in carbon nanotube-polystyrene composites (2000) Appl. Phys. Lett, 76, p. 2868
  • Jin, L., Bower, C., Zhou, O., Alignment of carbon nanotubes in a polymer matrix by mechanical stretching (1998) Appl. Phys. Lett, 73, p. 1197
  • Wang, Y., Wu, J., Wei, F., A treatment method to give separated multiwalled carbon nanotubes with high purity, high crystallization and a large aspect ratio (2003) Carbon, 41, p. 2939
  • Cadek, M., Coleman, J.N., Ryan, K.P., Nicolosi, V., Bister, G., Fonseca, A., Nagy, J.B., Blau, W.J., Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area (2004) Nano Lett, 4, p. 353
  • Sandler, J.K., Kirk, J.E., Kinloch, I.A., Shaffer, M.S., Windle, A.H., Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties (2003) Polymer, 44, p. 5893
  • Wei, C., Srivastava, D., Cho, K., Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites (2002) Nano Lett, 2, p. 647
  • De Falco, A., Fascio, M.L., Lamanna, M.E., Corcuera, M.A., Mondragon, I., Rubiolo, G.H., D'Accorso, N.B., Goyanes, S., Thermal treatment of the carbon nanotubes and their functionalization with styrene (2009) Phys. B: Condens. Matter, 404, p. 2780
  • Ruan, S.L., Gao, P., Yang, X.G., Yu, T.X., Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes (2003) Polymer, 44, p. 5643
  • Ajayan, P.M., Zhou, O.Z., Applications of carbon nanotubes. Carbon nanotubes: Synthesis, structure, properties, and applications (2001) Topics Appl. Phys, 80, p. 391
  • Famá, L.M., Pettarin, V., Goyanes, S.N., Bernal, C.R., Starch based nanocomposites with improved mechanical properties (2011) Carbohydr. Polym, 83, p. 1226
  • Famá, L., Gañán Rojo, P.G., Bernal, C., Goyanes, S., Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus (2012) Carbohydr. Polym, 87, p. 1989
  • Deng, P., Xu, Z., Li, J., Simultaneous determination of ascorbic acid and rutin in pharmaceutical preparations with electrochemical method based on multi-walled carbon nanotubes-chitosan composite film modified electrode (2013) J. Pharmaceut. Biomed, 76, p. 234
  • Mamedov, A.A., Kotov, N.A., Prato, M., Guldi, D.M., Wicksted, J.P., Hirsch, A. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites (2002) Nat. Mater, 1, p. 190
  • Chen, J., Rao, A.M., Lyuksyutov, S., Itkis, M.E., Hamon, M.A., Hu, H., Cohn, R.W., Haddonet, R.C., Dissolution of fulllength single-walled carbon nanotubes (2001) J. Phys. Chem. B, 105, p. 2525
  • Frankland, S.J., Caglar, A., Brenner, D.W., Griebel, M., Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotubepolymer interfaces (2002) J. Phys. Chem. B, 106, p. 3046
  • Breuer, O., Sundararaj, U., Big returns from small fibers: a review of polymer/carbon nanotube composites (2004) Polym. Compos, 25, p. 630
  • Xia, H., Song, M., Jin, J., Chen, L., Poly(propylene glycol)-grafted multiwalled carbon nanotube polyurethane (2006) Macromol. Chem. Phys, 207, p. 1945
  • Villmow, T., Potschke, P., Pegel, S., Haussler, L., Kretzschmar, B., Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix (2008) Polymer, 49, p. 3500
  • Liu, L., Wagner, H.D., Rubbery and glassy epoxy resins reinforced with carbon nanotubes (2005) Compos. Sci. Technol, 65, p. 1861
  • Lu, K.L., Lago, M., Chen, Y.K., Green, M.L., Harris, P.J., Tsang, S.C., Mechanical damage of carbon nanotubes by ultrasound (1996) Carbon, 34, p. 814
  • Watts, P.C., Hsu, W.K., Chen, G.Z., Fray, D.J., Kroto, H.W., Walton, D.R., A low resistance boron-doped carbon nanotube-polystyrene composite (2001) J. Mater. Chem, 11, p. 2482
  • Kis, A., Csanyi, G., Salvetat, J.-P., Lee, T.-N., Couteau, E., Kulik, A.J., Benoit, W., Forro, L., Reinforcement of single-walled carbon nanotube bundles by inter-tube bridging (2004) Nat. Mater, 3, p. 153
  • Ausman, K.D., Piner, R., Lourie, O., Rouff, R.S., Korobov, M., Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes (2000) J. Phys. Chem. B, 104, p. 8911
  • Liu, Y.Q., Yao, Z.L., Adronov, A., Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling (2005) Macromolecules, 38, p. 1172
  • Liu, Y.Q., Adronov, A., Preparation and utilization of catalyst-functionalized single-walled carbon nanotubes for ring-opening metathesis polymerization (2004) Macromolecules, 37, p. 4755
  • Li, H.M., Cheng, F.O., Duft, A.M., Adronov, A., Functionalization of singlewalled carbon nanotubes with well-defined polystyrene by "click" coupling (2005) J. Amer. Chem. Soc, 127, p. 14518
  • Strano, M.S., Dyke, C.A., Usrey, M.L., Barone, P.W., Allen, M.J., Shan, H.W., Kittrell, C., Smalley, R.E., Electronic structure control of single-walled carbon nanotube functionalization (2003) Sci, 301, p. 1519
  • Zurek, E., Autschbach, J., Density functional calculations of the 13C NMR chemical shifts in single-walled carbon nanotubes (2004) J. Amer. Chem. Soc, 126, p. 13079
  • Gilje, S., Han, S., Wang, M., Wang, K.L., Kaner, R.B., A chemical route to graphene for device applications (2007) Nano Lett, 7, p. 3394
  • Bunch, J.S., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., McEuen, P.L., Electromechanical resonators from graphene sheets (2007) Sci, 315, p. 490
  • Li, D., Muller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G., Highly conducting graphene sheets and Langmuir-Blodgett films (2008) Nat. Nanotechnol, 3, p. 101
  • Seligra, P., Nuevo, F., Ribba, L., García, N.L., Lamanna, M., Famá, L., Biodegradable PLLA-MWCNTs nanocomposites (2011) The 3rd International Conference on Biodegradable and Biobased Polymers, , BIOPOL, Strasbourg, France
  • Veedu, A., Cao, X., Li, K.M., Soldano, C., Kar, S., Ajayan, P.M., Ghasemi-Nejhad, M.N., Multifunctional composites using reinforced laminae with carbon nanotube forests (2006) Nature Mater, 5, p. 457
  • Liu, P., Modifications of carbon nanotubes with polymers (2005) Eur. Polym. J, 41, p. 2693
  • Pantarotto, D., Partidos, C.D., Hoebeke, J., Brown, F., Kramer, E., Briand, J.-P., Muller, S., Bianco, A., Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides (2003) Chem. Biol, 10, p. 961
  • Chen, R.J., Zhang, Y., Wang, D., Dai, H., Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization (2001) J. Amer. Chem. Soc, 123, p. 3838
  • Nakashima, N., Tomonari, Y., Murakami, H., Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion (2002) Chem. Lett, 6, p. 638
  • Sahoo, N.G., Rana, S., Cho, J.W., Li, L., Chan, S.H., Polymer nanocomposites basedon functionalized carbon nanotubes (2010) Prog. Polym. Sci, 35, p. 837
  • Wu, D., Wu, L., Zhang, M., Zhao, Y., Viscosity and thermal stability of polylactide composites with functionalized carbon nanotubes (2008) Polym. Degrad. Stab, 93, p. 1577
  • Raquez, J.-M., Habibi, Y., Murariu, M., Dubois, P., Polylactide (PLA)-based nanocomposites (2013) Prog. Polym. Sci, 38, p. 1504
  • Huang, W.J., Lin, Y., Taylor, S., Gaillard, J., Rao, A.M., Sun, Y.P., Sonicationassisted functionalization and solubilization of carbon nanotubes (2002) Nano Lett, 2, p. 231
  • Pillai, S.K., Ramontja, J., Ray, S.S., Amine functionalization of carbon nanotubes for the preparation of CNT based polylactide composites - A comparative study (2011) Nanostructured Materials and Nanotechnology V: Ceramic Engineering and Science Proceedings, p. 43. , S. Mathur, S.S. Ray, S. Widjaja, D. Singh, (Eds.), Hoboken: New Jersey, US
  • Novais, R.M., Simon, F., Pötschke, P., Villmow, T., Covas, J.A., Paiva, M.C., Poly(lactic acid) composites with poly(lactic acid)-modified carbon nanotubes (2013) J. Polym. Sci., Part A: Polym. Chem, 51, p. 3740
  • Paiva, M.C., Simon, F., Novais, R., Ferreira, T., Proença, M., Xu, W., Besenbacher, F., Controlled functionalization of carbon nanotubes by a solvent-free multicomponent approach (2010) ASC Nano, 4, p. 7379
  • Georgakilas, V., Kordatos, K., Prato, M., Guldi, D.M., Holzinger, M., Hirsch, A., Organic functionalization of carbon nanotubes (2002) J. Am. Chem. Soc, 124, p. 760
  • Kordatos, K., Da Ros, T., Bosi, S., Vazquez, E., Bergamin, M., Cusan, C., Pellarini, F., Pantarotto, D., Novel versatile fullerene synthons (2001) J. Org. Chem, 66, p. 4915
  • Chiu, W.-M., Kuo, H.-Y., Tsai, P.-A., Wu, J.-H., Preparation and properties of poly (lactic acid) nanocomposites filled with functionalized single-walled carbon nanotubes (2013) J. Polym. Environ, 21, p. 350
  • Martinez, G., Salavagione, H., Nanocompuestos poliméricos de grafeno: Preparación y propiedades (2011) Rev. Iberoam. Polím, 12, p. 53
  • Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C., Haddon, R.C., Solution properties of single-walled carbon nanotubes (1998) Sci, 282, p. 95
  • Czerw, R., Guo, Z., Ajayan, P.M., Sun, Y.P., Carrol, D.L., Functionalization of carbon nanotubes by free radicals (2001) Nano. Lett, 1, p. 423
  • Fu, K., Huang, W., Lin, Y., Riddle, L.A., Carroll, D.L., Sun, Y.P., Defunctionalization of functionalized carbon nanotubes (2001) Nano Lett, 1, p. 439
  • Viswanathan, G., Chakrapan, N., Yang, H., Wei, B., Chung, H., Cho, K., Ryu, C.Y., Ajayan, P.M., Single-step in situ synthesis of polymer-grafted single-wall nanotube composites (2003) J. Am. Chem. Soc, 125, p. 9258
  • Peng, H.Q., Alemany, L.B., Margrave, J.L., Khabashesku, V.N., Sidewall carboxylic acid functionalization of single-walled carbon nanotubes (2003) J. Am. Chem. Soc, 125, p. 15174
  • Ying, Y.M., Saini, R.K., Liang, F., Sadana, A.K., Billups, W.E., Functionalization of carbon nanotubes by free radicals (2003) Org. Lett, 5, p. 1471
  • Holzinger, M., Vostrovsky, O., Hirsch, A., Hennrich, F., Kappes, M., Weiss, M., Jellen, R., Angew, F., Sidewall functionalization of carbon nanotubes (2001) Chem. Int. Ed. Engl, 40, p. 4002
  • Jeong, J.S., Moon, J.S., Jeon, S.Y., Park, J.H., Alegaonkar, P.S., Yoo, J.B., Mechanical properties of electrospun PVA/MWNTs composite nanofibers (2007) Thin Solid Films, 515, p. 5136
  • Ajayan, P.M., Stephan, O., Colliex, C., Trauth, D., Aligned carbon nanotubes. Arrays formed by cutting a polymer resin-nanotube composite (1994) Sci, 265, p. 1212
  • Lagaron, J.M., Lopez-Rubio, A., Nanotechnology for bioplastics: Opportunities, challenges and strategies (2011) Trends Food Sci. Tech, 22, p. 611
  • Petersson, L., Oksman, K., Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement (2006) Compos. Sci. Technol, 66, p. 2187
  • Liu, Y., Chakrabartty, S., Gkinosatis, D.S., Mohanty, A.K., Lajnef, N., Multiwalled Carbon Nanotubes/Poly(L-lactide) Nanocomposite Strain Sensor for Biomechanical Implants (2007) Biomedical Circuits and Systems Conference, , BIOCAS IEEE, Montreal, Canadá
  • Samir, M.A., Alloin, F., Dufresne, A., Crosslinked nanocomposite polymer electrolytes reinforced with cellulose whiskers (2005) Biomacromolecules, 6, p. 612
  • De Jong, W.H., Borm, P.J.A., Drug delivery and nanoparticles: Applications and hazards (2008) J. Nanomedicine, 3, p. 133
  • Bokobza, L., Multiwall carbon nanotube elastomeric composites: A review (2007) Polymer, 48, p. 4907
  • Harris, P.J., Carbon nanotube composites (2004) Int. Mater. Rev, 49, p. 31
  • McClory, C., Chin, S.J., McNally, T., Polymer/carbon nanotube composites (2009) Aust. J. Chem, 62, p. 762
  • Martinez-Hernandez, A.L., Velasco-Santos, C., Castaño, V.M., Carbon nanotubes composites: processing, grafting and mechanical and thermal properties (2010) Curr. Nanosci, 6, p. 12
  • Moon, S.I., Jin, F., Lee, C.J., Tsutsumi, S., Hyon, S.H., Novel carbon nanotube/poly(L-lactic acid) composites: Their modulus. Thermal stability and electrical conductivity (2005) Macromol. Symp, 224, p. 287
  • Zhang, D., Kandadai, M.A., Cech, J., Roth, S., Curran, S.A., Poly(L-lactide) (PLLA)/multi-walled carbon nanotube (MWCNT) composite: Characterization and biocompatibility evaluation (2006) J. Phys. Chem. B, 110, p. 12910
  • Shieh, Y.T., Liu, G.L., Effects of carbon nanotubes on crystallization and melting behavior of poly(L-lactide) via DSC and TMDSC studies (2007) J. Polym. Sci. Pol. Phys, 45, p. 1870
  • Kwon, J.Y., Kim, H.D., Preparation and properties of acid-treated multiwalled carbon nanotube/waterborne polyurethane nanocomposites (2005) J. Appl. Polym. Sci, 96, p. 595
  • Yoon, J.T., Lee, S.C., Jeong, Y.G., Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes (2010) Compos. Sci. Technol, 70, p. 776
  • Barrau, S., Vanmansart, C., Moreau, M., Addad, A., Stoclet, G., Lefebvre, J.M., Crystallization behavior of carbon nanotube-polylactide nanocomposites (2011) Macromolecules, 44, p. 6496
  • Kuan, C.F., Chen, C.H., Kuan, H.C., Lin, K.C., Chiang, C.L., Peng, H.C., Multi-walled carbon nanotube reinforced poly (l-lactic acid) nanocomposites enhanced by water-crosslinking reaction (2008) J. Phys. Chem. Solids, 69, p. 1399
  • Wu, D., Wu, L., Zhou, W., Zhang, M., Yang, T., Crystallization and biodegradation of polylactide/carbon nanotube composites (2010) Polym. Eng. Sci, 50, p. 1721
  • Supronowicz, P.R., Ajayan, P.M., Ullmann, K.R., Arulanandam, B.P., Metzger, D.W., Bizios, R., Novel-current conducting composite sub-strates for exposing osetoblasts to alternating current stimulation (2002) J. Biomed. Mater. Res, 59, p. 499
  • Bhattacharya, M., Seong, W.-J., Carbon nanotubes - based materials - preparation, biocompatibility, and applications in dentistry (2013) Nanobiomaterials in Clinical Dentistry, p. 37. , K. Subramani, W. Ahmed, J.K. Hartsfield, (Eds.), Elsevier Inc.: US
  • Safadi, B., Andrews, R., Grulke, E.A., Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films (2002) J. Appl. Polym. Sci, 84, p. 2660
  • Bergin, S.D., Nicolosi, V., Streich, P.V., Giordani, S., Sun, Z., Windle, A.H., Ryan, P., Coleman, J.N., Towards solution of single-walled carbon nanotubes in common solvents (2008) Adv. Mater, 20, p. 1876
  • Kumar, B., Castro, M., Feller, J.F., Poly(lactic acid)-multi-wall carbon nanotube conductive biopolymer nanocomposite vapour sensors (2012) Sensor. Actuat. BChem, 161, p. 621
  • Kaminsky, W., Polyolefin carbon nanotube composites by in-situ polymerization (2011) Polymer Carbon Nanotube Composites: Preparation Properties and Applications, p. 3. , T. McNally, P. Pötschke, (Eds.), Woodhead: Cambridge, UK
  • Chang, T.E., Kisliuk, A., Rhodes, S.M., Brittain, W.J., Sokolov, A.P., Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite (2006) Polymer, 47, p. 7740
  • Zhu, B.K., Xie, S.H., Xu, Z.K., Xu, Y.Y., Preparation and properties of polyimide/aluminum nitride composites (2006) Compos. Sci. Technol, 66, p. 548
  • Liu, Y.L., Chang, Y.H., Liang, M., Poly(2, 6-dimethyl-1, 4-phenylene oxide) (PPO) multi-bonded carbon nanotube (CNT): Preparation and formation of PPO/CNT nanocomposites (2008) Polymer, 49, p. 5405
  • Lee, S.S., Park, C.Y., Lee, D.S., Properties of nanocomposites based on sulfonated poly(styrene-b-ethylenebutylene-b-styrene) and multiwalled carbon nanotubes (2008) Colloid. Surf. A: Physicochem. Eng. Aspects, 239, p. 313
  • Xie, X.L., Aloys, K., Zhou, X.P., Zeng, F.D., Ultrahigh molecular mass polyethylene/carbon nanotube composites: Crystallization and melting properties (2003) J. Therm. Anal Calorim, 74, p. 317
  • Jin, Z., Pramoda, K.P., Goh, S.H., Xu, G., Poly(vinylidene fluoride)-assisted melt-blending of multi-walled carbon nano-tube/poly(methyl methacrylate) composites (2002) Mater. Res. Bull, 37, p. 271
  • Shih, Y.-F., Wang, Y.-P., Hsieh, C.-F., Preparation and properties of PLA/long alkyl chain modified multi-walled carbon nanotubes nanocomposites (2011) J. Polym. Eng, 31, p. 13
  • Han, Z., Fin, A., Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review (2011) Prog. Polym. Sci, 36, p. 914
  • Yang, Z., Chen, X., Pu, Y., Zhou, L., Chen, C., Li, W., Xu, L., Wang, Y., Facile approach to obtain individual-nanotube dispersion at high loading in carbon nanotubes/polyimide composites (2007) Polym. Adv. Technol, 18, p. 458
  • Reddy, M.M., Vivekanandhan, S., Misra, M., Bhatia, S.K., Mohanty, A.K., Biobased plastics and bionanocomposites: Current status and future opportunities (2013) Prog. Polym. Sci, 38, p. 1653
  • Darder, M., Aranda, P., Ruiz-Hitzky, E., Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials (2007) Adv. Mater, 19, p. 1309
  • Xu, Z., Niu, Y., Yang, L., Xie, W., Li, H., Gan, Z., Wang, Z., Morphology, rheology and crystallization behavior of polylactide composites prepared through addition of five-armed star polylactide grafted multiwalled carbon nanotubes (2010) Polymer, 51, p. 730
  • Li, Q.-H., Zhou, Q.-H., Deng, D., Yu, Q.-Z., Gu, L., Gong, K.-D., Xu, K.-H., Enhanced thermal and electrical properties of poly (D, L-lactide)/multi-walled carbon nanotubes composites by in-situ polymerization (2013) Trans. Nonferrous Met. Soc. China, 23, p. 1421
  • Chen, G.-X., Kim, H.-S., Park, B.H., Yoon, J.-S., Synthesis of poly(L-lactide)-functionalized multiwalled carbon nanotubes by ring-opening polymerization (2007) Macromol. Chem. Phys, 208, p. 389
  • Zhao, Y., Qiu, Z., Yang, W., Effect of multi-walled carbon nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(L-lactide) (2009) Compos. Sci. Technol, 69, p. 627
  • Papageorgiou, G.Z., Achilias, D.S., Nanaki, S., Beslikas, T., Bikiaris, D., PLA nanocomposites: Effect of filler type on non-isothermal crystallization (2010) Thermochim. Acta, 511, p. 129
  • Han, H., Wang, X., Wu, D., Preparation, crystallization behaviors, and mechanical properties of biodegradable composites based on poly(L-lactic acid) and recycled carbon fiber (2012) Compos. Part A Appl. Sci. Manuf, 43, p. 1947
  • Kobashi, K., Villmow, T., Andres, T., Pötschke, P., Liquid sensing of meltprocessed poly(lactic acid)/multi-walled carbon nanotube composite films (2008) Sens. Actuators B: Chem, 134, p. 787
  • De Santis, P., Kovacs, A.J., Molecular conformation of poly (S-lactic acid) (1968) Biopolymers, 6, p. 299
  • Eling, B., Gogolewski, S., Pennings, A.J., Melt-spun and solution spun fibers (1982) Polymer, 23, p. 1587
  • Cartier, L., Okihara, T., Ikada, Y., Tsuji, H., Puiggali, J., Lotz, B., Epitaxial crystallization and crystalline polymorphism of polylactides (2000) Polymer, 41, p. 8909
  • Saeidlou, S., Huneault, M.A., Li, H., Park, C.B., Poly(lactic acid) Crystallization (2012) Prog. Polym. Sci, 37, p. 1657
  • Quan, H., Zhang, S.J., Qiao, J.L., Zhang, L.Y., The electrical properties and crystallization of stereocomplex poly(lactic acid) filled with carbon nanotubes (2012) Polymer, 53, p. 4547
  • Shieh, Y.T., Liu, G.L., Twu, Y.K., Wang, T.L., Yang, C.H., Effects of carbon nanotubes on dynamic mechanical property, thermal property, and crystal structure of poly(l-lactic acid) (2010) Polymer, 48, p. 145
  • González Seligra, P., Lamanna, M., Famá, L., PLA-fMWCNT bionanofilms with high modulus and great properties to apply in packaging and biomedicine (2014) Procedia Mater. Sci, , In press
  • Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., Kenny, J.M., Biodegradable polymer matrix nanocomposites for tissue engineering: A review (2010) Polym. Degrad. Stabil, 95, p. 2126
  • Xu, H.S., Dai, X.J., Lamb, P.R., Li, Z.M., Poly(L-lactide) crystallization induced by multiwall carbon nanotubes at very low loading (2009) J. Polym. Sci. Part B Polym. Phys, 47, p. 2341
  • Li, Y., Wu, H., Wang, Y., Liu, L., Han, L., Wu, J., Xiang, F., Synergistic effects of PEG and MWCNTs on crystallization behavior of PLLA (2010) J. Polym. Sci. Part B Polym. Phys, 48, p. 520
  • Yasuniwa, N., Sakamo, K., Ono, Y., Kawahara, W., Melting behavior of poly(l-lactic acid): X-ray and DSC analyses of the melting process (2008) Polymer, 49, p. 1943
  • Chrissafis, K., Paraskevopoulos, K.M., Papageorgiou, G.Z., Bikiaris, D.N., Thermal and dynamic mechanical behaviour of bionanocomposites: Fumed silica nanoparticles dispersed in poly(vinyl pyrrolidone), chitosan and poly(vinyl alcohol) (2008) Appl. Polym. Sci, 110, p. 1739
  • Chen, K., Wilkie, C.A., Vyazovkin, S., Nanoconfinement revealed in degradation and relaxation studies of two structurally different polystyrene-clay systems (2007) J. Phys. Chem. B, 111, p. 12685
  • Yoon, J.T., Jeong, Y.G., Lee, S.C., Min, B.G., Influences of poly(lactic acid)-grafted carbon nanotube on thermal, mechanical, and electrical properties of poly(lactic acid) (2009) Polym. Adv. Technol, 20, p. 631
  • Kwiatkowska, M., Broza, G., Sculte, K., Roslaniec, Z., The in-situ synthesis of poly(butylene terephthalate)/carbon nanotubes composites (2006) Rev. Adv. Mater. Sci, 12, p. 154
  • Ma, X., Jian, R., Chang, P., Yu, J., Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites (2008) Biomacromolecules, 9, p. 3314
  • Ma, X., Yu, J., Wang, N., Glycerol plasticized-starch/multiwall carbon nanotube composites for electroactive polymers (2008) Compos. Sci. Technol, 68, p. 268
  • Rao, Y., Pochan, J., Mechanics of polymer-clay nanocomposites (2007) Macromolecules, 40, p. 290
  • Lin, C., Wang, Y., Lai, Y., Yang, W., Jiao, F., Zhang, H., Ye, S., Zhang, Q., Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly(lactic-co-glycolic acid) for bone tissue engineering (2011) Colloid. Surface. B, 83, p. 367
  • Shi, X.F., Sitharaman, B., Pham, Q.P., Liang, F., Wu, K., Billups, W.E., Wilson, L.J., Mikos, A.G., Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering (2007) Biomaterials, 28, p. 4078
  • Wang, S.F., Shen, L., Zhang, W.D., Tongs, Y.J., Preparation and properties of chitosan/carbon nanotubes composites (2005) Biomacromolecules, 6, p. 3067
  • González Seligra, P., Lamanna, M., Famá, L., (2013) Nanofilms PLA-MWCNT con mejoras en las propiedades de tracción y en la permeabilidad al vapor de agua, 13° Congreso Internacional en Ciencia y Tecnología de Metalurgia y Materiales, , SAMCONAMET, Iguazú, Argentina
  • Mina, M.F., Beg, M.D.H., Islam, M.R., Alam, A., Nizam, A., Younus, R.M., Characterization of biodegradable nanocomposites with poly (lactic acid) and multiwalled carbon nanotubes (2013) World Acad. Sci. Eng. Tech, 73, p. 1019
  • Fukushima, K., Murariu, M., Camino, G., Dubois, P., Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly(lactic acid) (2010) Polym. Degrad. Stabil, 95, p. 1063
  • Feng, J., Sui, J., Cai, W., Wan, J., Chakoli, A.N., Gao, Z., Preparation and characterization of magnetic multi-walled carbon nanotubes-poly(l-lactide) composite (2008) Mater. Sci. Eng. B, 150, p. 208
  • Park, S.H., Lee, S.G., Kim, S.H., Isothermal crystallization behavior and mechanical properties of polylactide/carbon nanotube nanocomposites (2013) Compos. Part A, 46, p. 11
  • Yao, Z., Zhu, C.C., Cheng, M., Liu, J., Mechanical Properties of Carbon Nanotube by Molecular Dynamics Simulation (2001) Comput. Mater. Sci, 22, p. 180
  • Szymczyk, A., Roslaniec, Z., Zenker, M., García-Gutiérrez, M.C., Hernández, J.J., Rueda, D.R., Nogales, A., Ezquerra, T.A., Preparation and characterization of nanocomposites based on COOH functionalized multi-walled carbon nanotubes and on poly(trimethylene terephthalate) (2011) Express Polym. Lett, 5, p. 977
  • Huda, M.S., Drzal, L.T., Misra, M., Effect of fiber surface treatment on the properties of laminated biocomposites from poly(lactic acid) and kenaf fibers (2005) Ind. Eng. Chem. Res, 44, p. 5593
  • Keener, T.J., Stuart, R.K., Brown, T.K., Maleated coupling agents for natural fibre composites (2004) Compos. Part A: Appl. Sci. Manuf, 35, p. 357

Citas:

---------- APA ----------
(2014) . Nanocomposites based on polylactic acid (PLA) Reinforced by functionalized carbon nanotubes (CNT). Polymer-Matrix Composites: Types, Applications and Performance, 1-36.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816332_v_n_p1_Fama [ ]
---------- CHICAGO ----------
Famá, L. "Nanocomposites based on polylactic acid (PLA) Reinforced by functionalized carbon nanotubes (CNT)" . Polymer-Matrix Composites: Types, Applications and Performance (2014) : 1-36.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816332_v_n_p1_Fama [ ]
---------- MLA ----------
Famá, L. "Nanocomposites based on polylactic acid (PLA) Reinforced by functionalized carbon nanotubes (CNT)" . Polymer-Matrix Composites: Types, Applications and Performance, 2014, pp. 1-36.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816332_v_n_p1_Fama [ ]
---------- VANCOUVER ----------
Famá, L. Nanocomposites based on polylactic acid (PLA) Reinforced by functionalized carbon nanotubes (CNT). Polym.-Matrix Compos.: Types, Appl. and Perform. 2014:1-36.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816332_v_n_p1_Fama [ ]