Parte de libro

Bompadre, M.J.; Colombo, R.; Del Carmen Ríos De Molina, M.; Godeas, A.M.; Pardo, A.G. "Arbuscular mycorrhizal fungi in the alleviation of oxidative stress under cutting propagation management" (2014) Mycorrhizas: Structure, Development and Functions:181-201
Estamos trabajando para incorporar este artículo al repositorio

Abstract:

The capacity of roots to sense soil physicochemical parameters plays an essential role in maintaining plant nutritional and developmental functions under abiotic stress. Drought greatly affects the growth and development of plants and can cause extensive losses to agricultural productivity. The water regime affects a wide variety of physiological and biochemical processes in plants including an increased production of reactive oxygen species (ROS) capable of causing oxidative damage to proteins, DNA and lipids. Moreover, this ROS production can induce cellular, anatomical, and morphological changes that improve drought tolerance. Arbuscular mycorrhizal fungi (AMF) colonize a wide range of plant species though the ability of different AMF to promote host growth and/or water deficit resistance is variable. AMF contributes to drought tolerance through a combination of physical, nutritional and physiological effects. The response to oxidative stress depends on many factors, including the organism tissue and the degree of stress. In most cases mycorrhizal plants increase antioxidant defenses, such as the ROSscavenging enzymes superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). AMF can maintain the levels of malondialdehyde (MDA), a compound indicative of lipid damage, by rapidly increasing antioxidant defenses and preventing lipid damage. In other cases an increase of MDA is observed in mycorrhizal plants due to an active response to oxidative stress. A critical step of AMF inoculation technology is the appropriate selection of fungal isolates to be used as inoculants. Nursery cultivation is the most convenient way to improve the success of semi-woody cuttings transplantation (e.g. olive, pomegranate, citrus) at the crop area. Plants suffer at least two transplant moments in nursery conditions prior to outside cultivation. AMF can reduce transplant stress by changing the morphology of the root system favouring the establishment of plants. Thus AMF can greatly contribute to crop productivity and environmental sustainability. Artificial inoculation of plant cuttings with AMF at an early stage of cutting development has been adopted by an increasing number of nursery managers as a method for promoting growth, production and precocity. Moreover, it is an essential component for most plants and it can be used as a biofertilizer resource. In this chapter we discuss the effect of an early AMF inoculation in alleviating oxidative stress in semi-woody cutting propagation management under nursery conditions. We also discuss the benefits of AMF to solve the problematic issue of water deficit and transplant stresses generated during plant growth. © 2014 by Nova Science Publishers, Inc. All rights reserved.

Registro:

Documento: Parte de libro
Título:Arbuscular mycorrhizal fungi in the alleviation of oxidative stress under cutting propagation management
Autor:Bompadre, M.J.; Colombo, R.; Del Carmen Ríos De Molina, M.; Godeas, A.M.; Pardo, A.G.
Filiación:Laboratorio de Micología Molecular, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Provincia de Buenos Aires, B1876BXD, Argentina
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA). Intendente Güiraldes, Buenos Aires, Argentina
Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires (UBA), 4to piso, Pabellón 2. C1428EGA, Buenos Aires, Argentina
Año:2014
Página de inicio:181
Página de fin:201
Título revista:Mycorrhizas: Structure, Development and Functions
Título revista abreviado:Mycorrhizas: Struct., Dev. and Funct.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816332_v_n_p181_Bompadre

Referencias:

  • Porras-Soriano, A., Soriano-Martín, M.L., Porras-Piedra, A., Azcón, R., Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions (2009) Journal of Plant Physiology, 166 (13), pp. 1350-1359
  • Alguacil, M.M., Hernández, J.A., Caravaca, F., Portillo, B., Roldán, A., Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil (2003) Physiologiae Plantarum, 118, pp. 562-570
  • Al-Karaki, G., McMichael, B., Zak, J., Field response of wheat to arbuscular mycorrhizal fungi and drought stress (2004) Mycorriza, 14, pp. 263-269
  • Al-Karaki, G.N., Benefit, cost and water-use efficiency of arbuscular mycorrhizal durum wheat grown under drought stress (1998) Mycorriza, 8 (1), pp. 41-45
  • Asada, K., The water-water cycle in cloroplasts: scavenging of active oxigen and dissipation of excess photons (1999) Annual Review of Plant Physiology and Plant Molecular Biology, 50, pp. 601-639
  • Asada, K., Takahashi, M., Production and scavenging of active oxygen in photosynthesis (1987) Photoinhibition, Topics in Photosynthesis., pp. 227-287. , Kye DJ; Osmond CB; Arntzen CJ (eds.) , Amsterdam: Elsevier
  • Augé, R.M., Water relations, drought and vesicular arbuscular symbiosis (2001) Mycorrhiza, 11, pp. 3-42
  • Barea J.M.y Jeffries, P., (1995) Arbuscular mycorrhizas in sustainable soil plant systems, pp. 521-559. , En: Mycorrhiza Structure Function, Molecular Biology and Biotechnology, Hock, B. and Varma, A. Eds. Springer-Verlag, Heidelberg
  • Bompadre, M.J., Dos metodologías de inoculación con (2002) Glomus intraradices y Gigaspora rosea en vástagos micropropagados de helecho (Nephrolepis exaltata cultivar Boston)., , Tesis de Licenciatura
  • Bompadre, M.J., Pérgola, M., Fernández Bidondo, L., Colombo, R.P., Silvani, V.A., Pardo, A.G., Ocampo, J.A., Godeas, A.M., Evaluation of arbuscular mycorrhizal fungi capacity to alleviate abiotic stress of olive (Olea europaea L.) plants at different transplant conditions (2014) The Scientific World Journal, pp. 1-12
  • Bompadre, M.J., Silvani, V.A., Fernández Bidondo, L., Ríos de Molina, M.D.C., Colombo, R.P., Pardo, A.G., Godeas, A.M., Arbuscular mycorrhizal fungi alleviate oxidative stress in pomegranate plants growing under different irrigation conditions (2014) Botany, 92 (3), pp. 187-193
  • Bray, E.A., Plant responses to water deficit (1997) Trends in Plant Science., 2 (2), pp. 48-54
  • Bray, E.A., Bailey-Serres, J., Weretilnyk, E., Responses to Abiotic Stresses. En: Biochemistry and molecular biology of plants (2000) American society of plant physiologists, pp. 1158-1203. , Buchanan B., Gruissem R., Jones R. Eds
  • Bryant, G., (1995) Propagation Handbook, , Stackpole Books: Mechanicsburg, Pennsylvania
  • Calvente, R., Cano, C., Ferrol, N., Azcon-Aguilar, C., Barea, J.M., Analysing natural diversity of arbuscular mycorrhizal fungi in olive tree (Olea europaea L.) plantations and assessment of the effectiveness of native fungal isolates as inoculants for commercial cultivars of olive plantlets (2004) Applied Soil Ecology., 26, pp. 11-19
  • Carpio, L.A., Davies, F.T., Jr., Arnold, M.A., Arbuscular mycorrhizal fungi, organic and inorganic controlled-release fertilizers: effect on growth and leachate of container-grown bush morning glory (Ipomoea carnea ssp. fistulosa) under high production temperatures (2005) J Amer Soc Hort Sci, 130 (1), pp. 131-139
  • Causin, H.F., Roberts, I.N., Criado, M.V., Gallego, S.M., Pena, L.B., Ríos, M.C., Barneix, A.J., Changes in hydrogen peroxide homeostasis and cytokinin levels contribute to the regulation of shade-induced senescence in wheat leaves (2009) J. Plant Sci., 177, pp. 698-704
  • Citernesi, A.S., Vitagliano, C., Giovannetti, M., Plant growth and root system morphology of Olea europaea L. Rooted cuttings as influenced by arbuscular mycorrhizas (1998) Journal of Horticultural Science Biotechnology., 73 (5), pp. 647-654
  • Dalton, D.A., Antioxidant defenses of plants and fungi. En: Oxidative stress and antioxidant defenses in biology (1995), pp. 298-355. , Ahmad S. Ed. Chapman and Hall, New York; Dalton, D.A., Langeberg, L., Robbins, M., Purification and characterization of monodehidroascorbate reductase from soybean root nodules (1992) Archives of Biochemistry and Biophysics., 292, pp. 281-286
  • Dalton, D.A., Rusell, S.A., Hanus, F.J., Pascoe, G.A., Evans, H.J., Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules (1986) Proeedings in Natural Academy of Science USA., 83, pp. 3811-3815
  • Davies, F.T., Jr., Olade-Portugal, V., Aguilera-Gomez, L., Alvarado, M.J., Ferrera-Cerrato, R.C., Boutton, T.W., Alleviation of drought stress of Chile ancho pepper (Capsicum annuum L. cv. San Luis) with arbuscular mycorrhiza indigenous to Mexico (2002) Scientia Hort., 92, pp. 347-359
  • Del Rio, L.A., Sandalio, L.M., Palma, J.M., Bueno, P., Corpas, F.J., Metabolism of oxygen radicals in peroxisomes and cellular implications (1992) Free Radicals on Biology and Medicine., 13, pp. 557-580
  • Divo de Sesar, M., D'Ambrogio, A., Boquete, J., Vilella, F., Stella, A., Determinación del momento óptimo de aplicación de 6-bencilaminopurina y correspondencia con la secuencia histológica en el proceso de enraizamiento de estacas semileñosas de Jasminum mensyi Han-ce (Oleaceae) (2003) Floricultura en la Argentina, Investigación y Tecnología de Producción, pp. 27-36 and 468. , A.J. Paséale (ed.), Editorial Facultad de Agronomía, Universidad de Buenos Aires, Argentina
  • Bacelar, E.A., Santos, D.L., Moutinho-Pereira, J.M., Gonçalves, B.C., Ferreira, H.F., Correia, C.M., Inmediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: Changes on structure and chemical composition of foliage and oxidative damage (2006) Plant Science, 170, pp. 596-605
  • Espeleta, J.F., Eissentat, D.M., Graham, J.H., Citrus root responses to localized drying soil: a new approach to studying mycorrhizal effects on the roots of mature trees (1999) Plant Soil., 206, pp. 1-10
  • Fester T.y Hause, G., Accumulation of reactive oxigen species in arbuscular mycorrhizal roots (2005) Mycorrhiza., 15, pp. 373-379
  • Franco, J.A., Bañón, S., Vicente, M.J., Miralles, J., Martínez-Sánchez, J.J., Root development in horticultural plants grown under abiotic stress conditions - a review (2011) J Hort. Sci. & Biotech., 86 (6), pp. 543-556
  • Gianinazzi, S., Vesicular-Arbuscular (endo)-mycorrhizas: Cellular, biochemical and genetics mycorrhizal roots (1991) Plant and Soil., 71, pp. 197-209
  • Hartmann, H.T., Kester, D.E., Davies, F.T., Geneve, R.L., (1996) Plant Propagation, Principles and Practices, , Prentice Hall: Upper Saddle River, New Jersey
  • Hossain M.A.y Asada, K., Inactivation of ascorbate peroxidase in spinach chloroplasts on dark addition of hydrogen peroxide: its protection by ascorbate (1984) Plant Cell Physiology., 25, pp. 1285-1295
  • Huang, L.L., Yang, C., Zhao, Y., Xu, X., Xu, Q., Li, G.Z., Cao, J., Herbert, S.J., Antioxidant defenses of mycorrhizal fungus infection against SO2- induced oxidative stress in Avena nuda seedlings (2008) Bull. Environ. Cont. Toxicol., 81, pp. 440-444
  • Isfendiyaroglu, M., Ozeker, E., Baser, S., Rooting of 'Ayvalik' olive cuttings in different media (2009) Spanish J of Agricultural Research., 7 (1), pp. 165-172
  • Iturbe-Ormaetxe, I., Matamoros, M.A., Rubio, M.C., Dalton, D.A., Becana, M., The antioxidants of legume nodule mitochondria (2001) Molecular Plant Microbe International., 14, pp. 1189-1196
  • Ruíz-Lozano, J.M., Porcel, R., Azcón, C., Aroca, R., Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies (2012) Journal of Experimental Botany, 63 (11), pp. 4033-4044
  • Jimenez, A., Hernandez, J.A., Del Rio, L.A., Sevilla, F., Evidence for the presence of the ascorbate-glutathione cycle in mithocondria and peroxisomes of pea leaves (1997) Plant Physiologist., 114, pp. 275-284
  • Koller, G.L., Transplanting stress - a view from the plant's perspective (1977) Arnoldia, 37 (5), pp. 230-241
  • Lagoutte, S., Divo de Sesar, M., Vilella, F., Efecto del tamaño de celdas y citoquininas en el crecimiento de plantas de petunia (2009) Phyton, 78 (1), pp. 31-36
  • Liptay, A., Sikkema, P., Fonteno, W., Transplant growth control through water deficit stress-A review (1998) HortTechnol, 8 (4), pp. 1-5
  • Bompadre, M.J., Rios De Molina, M.C., Colombo, R.P., Fernandez Bidondo, L., Silvani, V.A., Pardo, A.G., Ocampo, J.A., Godeas, A.M., Differential efficiency of two strains of the arbuscular mycorrhizal fungus Rhizophagus irregularis on olive (Olea europaea) plants under two water regimes (2013) Symbiosis, 61, pp. 105-112
  • Marin, M., Arbuscular mycorrhizal inoculation in nursery practice. En:Handbook of Microbial Biofertilizers (2005), pp. 289-324. , Food Products Press® An Imprint of the Haworth Press, Inc New York. London. Oxford Rai M.K. Ed; Miller, G., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R., Reactive oxygen species homeostasis and signalling Turing drought and salinity stresses (2010) Plant, Cell and Environment, 33, pp. 453-467
  • Mittler, R., Oxidative stress, antioxidants and stress tolerante (2002) Trends in Plant Science, 7 (9), pp. 405-410
  • Mittler, R., Vanderauwera, S., Gollery, M., van Breusegem, F., Reactive oxygen gene network of plants (2004) Trends in Plant Science, 9 (10), pp. 490-498
  • Morel Y.y Barouki, R., Repression of gene expression by oxidative stress (1999) Biochemical Society., 342, pp. 481-496
  • Narayan, R.P., Khare, V., Kehri, H.K., Role of AM fungi in reclamation of salt affected soils: a review (2013) International journal of Biology, Pharmacy and Allied Sciences., 2 (5), pp. 1167-1187
  • Nilsen E.T.y Orcutt, D.M., (1996) The physiology of plants under stress, , John Wiley & Sons Inc., Nueva York
  • Noctor G.y Foyer, C.H., Ascorbate and glutathione: Keeping active oxygen under control (1998) Annual Review of Plant Physiology and Plant Molecular Biology., 49, pp. 249-279
  • Knight, P., Coker, C.H., Anderson, J.M., Murchison, D.S., Watson, C.E., Mist interval and K-IBA concentration influence rooting of orange and mountain azalea (2005) Native Plants, pp. 111-117
  • Pérgola, M., (2002) Inoculación con Glomus intraradices en vástagos microporpagados de diferentes especies ornamentales, , Tesis de Licenciatura
  • Pinior, A., Grunewaldt-Stöcker, G., von Alten, H., Strasser, R.J., Mycorrhizal impacto n drought stress tolerante of rose plants probed by chlorophyll a fluorescente, proline content and visual scoring (2005) Mycorrhiza, 15, pp. 596-605
  • Porcel, R., Barea, J.M., Ruíz-Lozano, J.M., Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence (2003) New Phytol, 157, pp. 135-143
  • Porcel, R., Ruíz-Lozano, J.M., Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress (2004) J. Exp. Bot., 55 (403), pp. 1743-1750
  • Porras Piedra, A., Soriano Martín, M.L., Porras Soriano, A., Fernández Izquierdo, G., Influence of arbuscular mycorrhizas on the growth rate of mist-propagated olive plantlets (2005) Spanish Journal of Agricultural Research., 3 (1), pp. 98-105
  • Raman N.y Selvaraj, T., (2005) Tripartite relationship of Rhizobium, AMF, and host in growth promotion. En Handbook of microbial Biofertilizers. Food Products Press®, pp. 51-88. , An Imprint of the Haworth Press, Inc New York. London. Oxford Rai M.K. Ed
  • Rizhsky, L., Liang, H., Mittler, R., The water-water cycle is essential for chloroplast protection in the absence of stress (2003) J. Biol. Chem., 278 (40), pp. 38921-38925
  • Roldán, A., Díaz-Vivancos, P., Hernández, J.A., Carrasco, L., Caravaca, F., Superoxide dismutase and total peroxidase activities in relation to drought recovery performance on mycorrhizal shrub seedlings grown in an amended semiarid soil (2008) J. Plant Physiol., 165, pp. 715-722
  • Roqueiro, G., Maldonado, S., Ríos de Molina, M.C., Maroder, H., Fluctuation of oxidative stress indicators in Salix nigra seeds during priming (2012) J. Exper. Bot., 63 (10), pp. 3631-3642
  • Ruiz-Lozano, J.M., Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies (2003) Mycorrhiza., 13, pp. 309-317
  • Gianinazzi, S., Gollotte, A., Binet, M.N., van Tuinen, D., Redecker, D., Wipf, D., Agroecology: the key role of arbuscular mycorrhizas in ecosystem services (2010) Mycorrhiza, 20, pp. 519-530
  • Sanchez-Diaz M.y Aguirreolea, J., (2002) El agua en la planta. Fundamentos de fisiología vegetal, pp. 17-30. , Azcon-Bieto J. y Talon M., Eds. McGraw-Hill-Interamericana
  • Scagel, C.F., Keddy, K., Armstrong, J.M., Mycorrhizal fungi in rooting substrate influences the quantity and quality of roots on stem cuttings of hick's yew (2003) HortTechnology., 13 (1), pp. 62-66
  • Scandalios, J.G., Guan, L., Polidoros, A.N., Catalases in plants: Gene structure, properties, regulation and expression (1997) Oxidative stress and the molecular biology of antioxidants defenses, pp. 343-406. , . Scandalios J.G. Eds. Cold springer harbor, New York
  • Schübler, A., Schwarzott, D., Walker, C., A new fungal phylum, the Glomeromycota: phylogeny and evolution (2001) Mycological Research., 105 (12), pp. 1413-1421
  • Smirnoff, N., Plant resistance to environmental stress (1998) Current Opinion in Biotechnology., 9, pp. 214-219
  • Stahl, P.D., Schuman, G.E., Frost, S.M., Williams, S.E., Arbuscular Mycorrhizal and water stress tolerance of Wyoming big sagebrush seedling (1998) Soil Science in Society of American Journal., 62, pp. 1309-1313
  • Subhan, S., Sharmila, P., Pardha Saradhi, P., Glomus fasciculatum alleviates transplantation shock of micropropagated Sesbania sesban (1998) Plant Cell Repports., 17, pp. 268-272
  • Subramanian, K.S., Charest, C., Nutritional, growth and reproductive responses of maize during and after drought stress at tasselling (1997) Mycorrhiza., 7, pp. 25-32
  • Sundara, B., Natarajan, V., Hari, K., Influence of phosphorous solubilizing bacteria on the changes in soil available phosphorous and sugarcane and sugar yields (2002) Field Crops Research., 77, pp. 43-49
  • Tanu, P.A., Adholeya, A., Potential of arbuscular micorrhizae in organic farming systems (2005) Handbook of Microbial Biofertilizers, pp. 223-239. , Food Products Press® An Imprint of the Haworth Press, Inc New York. London. Oxford Rai M.K. Ed
  • Wakelin, S.A., Warren, R.A., Harvey, P.R., Ryder, M.H., Phosphate solubilization by Penicillium spp. Closely associated with wheat roots (2004) Biology of Fertil Soils., 40, pp. 36-43
  • Wang, W.X., Vinocur, B., Shoseyov, O., Altman, A., Biotechnology of plant osmotic stress tolerance: physiological and molecular considerations (2001) Acta Horticultural., 560, pp. 285-292
  • Waterer D.R.y Coltman, R.R., Response of mycorrhizal bell peppers to inoculation timing, phosphorus and water stress (1989) HortScience., 24, pp. 688-690
  • Wilson, J., Munro, R.C., Ingleby, K., Mason, P.A., Jefwa, J., Muthoka, P.N., Dick, J.M., Leakey, R.R., Tree establishment in semiarid lands of Kenya-role of mycorrhizal inoculation and water -retaining polymer (1991) Forest Ecology and Management., 45, pp. 153-163
  • Wu, Q.S., Zou, Y.N., Xia, R.X., Effects of water stress and arbuscular mycorrhizal fungi on reactive oxigen metabolism and antioxidant production by citrus (Citrus tangerine) roots (2006) European Journal of Soil Biology., 42, pp. 166-172
  • Wu, Q.S., Xia, R.X., Zou, Y.N., Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress (2008) Europ J Soil Biol, 44, pp. 122-128
  • Zhu, X., Song, F., Liu, S., Arbuscular mycorrhiza impacts on drought stress of maize plants by lipid peroxidation, proline content and activity of antioxidant system (2011) J. Food Agric. & Environ., 9 (2), pp. 583-587

Citas:

---------- APA ----------
Bompadre, M.J., Colombo, R., Del Carmen Ríos De Molina, M., Godeas, A.M. & Pardo, A.G. (2014) . Arbuscular mycorrhizal fungi in the alleviation of oxidative stress under cutting propagation management. Mycorrhizas: Structure, Development and Functions, 181-201.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816332_v_n_p181_Bompadre [ ]
---------- CHICAGO ----------
Bompadre, M.J., Colombo, R., Del Carmen Ríos De Molina, M., Godeas, A.M., Pardo, A.G. "Arbuscular mycorrhizal fungi in the alleviation of oxidative stress under cutting propagation management" . Mycorrhizas: Structure, Development and Functions (2014) : 181-201.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816332_v_n_p181_Bompadre [ ]
---------- MLA ----------
Bompadre, M.J., Colombo, R., Del Carmen Ríos De Molina, M., Godeas, A.M., Pardo, A.G. "Arbuscular mycorrhizal fungi in the alleviation of oxidative stress under cutting propagation management" . Mycorrhizas: Structure, Development and Functions, 2014, pp. 181-201.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816332_v_n_p181_Bompadre [ ]
---------- VANCOUVER ----------
Bompadre, M.J., Colombo, R., Del Carmen Ríos De Molina, M., Godeas, A.M., Pardo, A.G. Arbuscular mycorrhizal fungi in the alleviation of oxidative stress under cutting propagation management. Mycorrhizas: Struct., Dev. and Funct. 2014:181-201.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816332_v_n_p181_Bompadre [ ]