Parte de libro

Correa-García, S.; Bermúdez-Moretti, M. "Gaba metabolism in saccharomyces cerevisiae" (2014) Gamma-Aminobutyric Acid (GABA): Biosynthesis, Medicinal Uses and Health Effects:13-28
Estamos trabajando para incorporar este artículo al repositorio

Abstract:

The y-aminobutyric acid (GABA) is a non protein amino acid present in bacteria, plants, fungi and even in vertebrates. The role of GABA in the budding yeast Saccharomyces cerevisiae is not fully understood. GABA can be used by yeast as the sole nitrogen source and its carbon backbone enters the tricarboxylic acid (TCA) cycle. Three permeases are involved in extracellular GABA uptake: the general amino acid permease Gap1, the proline-specific permease Put4 and the GABA-specific permease Uga4. Once, within the cell, GABA is deaminated by the enzyme GABA transaminase, yielding glutamate and succinate semialdehyde. Glutamate enters the central nitrogen metabolism, while succinate semialdehyde is converted to succinate by the succinate semialhehyde dehydrogenase. Then, succinate enters the TCA cycle. However, most of the incorporated GABA is not catabolized but accumulated in a subcellular compartment, like the vacuole. On the other hand, GABA is synthesized in yeast cells by the decarboxylation of glutamate as an intermediate of the GABA shunt, by which a-ketoglutarate is converted to succinate. GABA shunt bypasses two steps of the TCA cycle and it is energetically less efficient than the direct oxidation of a-ketoglutarate at the TCA cycle. Strong evidence suggests that the GABA shunt plays a crucial role in protecting cells from stress. © 2014 by Nova Science Publishers, Inc. All rights reserved.

Registro:

Documento: Parte de libro
Título:Gaba metabolism in saccharomyces cerevisiae
Autor:Correa-García, S.; Bermúdez-Moretti, M.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - IQUIBICEN, Buenos Aires, Argentina
Palabras clave:GABA; Metabolism; Saccharomyces cerevisiae; Transcriptional regulation; Amino acids; Carboxylation; Metabolism; Nitrogen; Physiology; Aminobutyric acids; Direct oxidation; GABA; Nitrogen metabolism; Nitrogen sources; Subcellular compartments; Transcriptional regulation; Tricarboxylic acids; Yeast
Año:2014
Página de inicio:13
Página de fin:28
Título revista:Gamma-Aminobutyric Acid (GABA): Biosynthesis, Medicinal Uses and Health Effects
Título revista abreviado:Gamma-Aminobutyric Acid (GABA): Biosynth., Med. Uses and Health Eff.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816332_v_n_p13_CorreaGarcia

Referencias:

  • Abdel-Sater, F., Iraqui, I., Urrestarazu, A., Andre, B., The external amino acid signaling pathway promotes activation of Stp1 and Uga35/Dal81 transcription factors for induction of the AGP1 gene in Saccharomyces cerevisiae (2004) Genetics., 166, pp. 1727-1739
  • Anderlund, M., Nissen, T.L., Nielsen, J., Villadsen, J., Rydstrom, J., Hahn-Hagerdal, B., Kielland-Brandt, M.C., Expression of the Escherichia coli pntA and pntB genes, encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation (1999) Appl. Environ. Microbiol., 65, pp. 2333-2340
  • Andre, B., The UGA3 gene regulating the GABA catabolic pathway in Saccharomyces cerevisiae codes for a putative zinc-finger protein acting on RNA amount (1990) Mol. Gen. Genet., 220, pp. 269-276
  • Andre, B., Hein, C., Grenson, M., Jauniaux, J.C., Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae (1993) Mol. Gen. Genet., 237, pp. 17-25
  • Andre, B., Talibi, D., Soussi Boudekou, S., Hein, C., Vissers, S., Coornaert, D., Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5'-GAT(A/T)A-3' upstream from the UGA4 gene of Saccharomyces cerevisiae (1995) Nucleic Acids Res., 23, pp. 558-564
  • Andriamampandry, C., Siffert, J.C., Schmitt, M., Garnier, J.M., Staub, A., Muller, C., Gobaille, S., Maitre, M., Cloning of a rat brain succinic semialdehyde reductase involved in the synthesis of the neuromodulator gamma-hydroxybutyrate (1998) Biochem. J., 334 (PART. 1), pp. 43-50
  • Bach, B., Meudec, E., Lepoutre, J.P., Rossignol, T., Blondin, B., Dequin, S., Camarasa, C., New insights into γ-aminobutyric acid catabolism: Evidence for γ-hydroxybutyric acid and polyhydroxybutyrate synthesis in Saccharomyces cerevisiae (2009) Appl. Environ. Microbiol., 75, pp. 4231-4239
  • Beck, T., Hall, M.N., The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors (1999) Nature., 402, pp. 689-692
  • Bermudez Moretti, M., Correa Garcia, S., Batlle, A., UGA4 gene expression in Saccharomyces cerevisiae depends on cell growth conditions (1998) Cell Mol. Biol.(Noisy-le-grand)., 44, pp. 585-590
  • Bermudez Moretti, M., Correa Garcia, S., Ramos, E., Batlle, A., delta-Aminolevulinic acid uptake is mediated by the γ-aminobutyric acid-specific permease UGA4 (1996) Cell Mol. Biol. (Noisy-le-grand)., 42, pp. 519-523
  • Bermudez Moretti, M., Correa Garcia, S., Ramos, E.H., Batlle, A., GABA uptake in a Saccharomyces cerevisiae strain (1995) Cell Mol. Biol. (Noisy-le-grand), 41, pp. 843-849
  • Bermudez Moretti, M., Correa Garcia, S., Stella, C., Ramos, E., Batlle, A.M., Delta-aminolevulinic acid transport in Saccharomyces cerevisiae (1993) Int. J. Biochem., 25, pp. 1917-1924
  • Bermudez Moretti, M., Correa Garcia, S.R., Chianelli, M.S., Ramos, E.H., Mattoon, J.R., Batlle, A., Evidence that 4-aminobutyric acid and 5-aminolevulinic acid share a common transport system into Saccharomyces cerevisiae (1995) Int. J. Biochem. Cell Biol., 27, pp. 169-173
  • Bermudez Moretti, M., Perullini, A.M., Batlle, A., Correa Garcia, S., Expression of the UGA4 gene encoding the delta-aminolevulinic and γ-aminobutyric acids permease in Saccharomyces cerevisiae is controlled by amino acid-sensing systems (2005) Arch. Microbiol., 184, pp. 137-140
  • Bertram, P.G., Choi, J.H., Carvalho, J., Chan, T.F., Ai, W., Zheng, X.F., Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3 (2002) Mol. Cell Biol., 22, pp. 1246-1252
  • Boban, M., Ljungdahl, P.O., Dal81 enhances Stp1- and Stp2-dependent transcription necessitating negative modulation by inner nuclear membrane protein Asi1 in Saccharomyces cerevisiae (2007) Genetics., 176, pp. 2087-2097
  • Boer, V.M., Daran, J.M., Almering, M.J., de Winde, J.H., Pronk, J.T., Contribution of the Saccharomyces cerevisiae transcriptional regulator Leu3p to physiology and gene expression in nitrogen- and carbon-limited chemostat cultures (2005) FEMS Yeast Res., 5, pp. 885-897
  • Bouche, N., Fromm, H., GABA in plants: just a metabolite (2004) Trends Plant Sci., 9, pp. 110-115
  • Breitkreuz, K.E., Allan, W.L., Van Cauwenberghe, O.R., Jakobs, C., Talibi, D., Andre, B., Shelp, B.J., A novel gamma-hydroxybutyrate dehydrogenase: identification and expression of an Arabidopsis cDNA and potential role under oxygen deficiency (2003) J. Biol. Chem., 278, pp. 41552-41556
  • Bricmont, P.A., Daugherty, J.R., Cooper, T.G., The DAL81 gene product is required for induced expression of two differently regulated nitrogen catabolic genes in Saccharomyces cerevisiae (1991) Mol. Cell Biol., 11, pp. 1161-1166
  • Cao, J., Barbosa, J.M., Singh, N., Locy, R.D., GABA transaminases from Saccharomyces cerevisiae and Arabidopsis thaliana complement function in cytosol and mitochondria (2013) Yeast., 30, pp. 279-289
  • Cao, J., Barbosa, J.M., Singh, N.K., Locy, R.D., GABA shunt mediates thermotolerance in Saccharomyces cerevisiae by reducing reactive oxygen production (2013) Yeast., 30, pp. 129-144
  • Cardillo, S.B., Bermudez Moretti, M., Correa Garcia, S., Uga3 and Uga35/Dal81 transcription factors regulate UGA4 transcription in response to γ-aminobutyric acid and leucine (2010) Eukaryot Cell., 9, pp. 1262-1271
  • Cardillo, S.B., Correa Garcia, S., Bermudez Moretti, M., Common features and differences in the expression of the three genes forming the UGA regulon in Saccharomyces cerevisiae (2011) Biochem. Biophys. Res. Commun., 410, pp. 885-889
  • Cardillo, S.B., Levi, C.E., Bermudez Moretti, M., Correa Garcia, S., Interplay between the transcription factors acting on the GATA- and GABA-responsive elements of Saccharomyces cerevisiae UGA promoters (2012) Microbiology., 158 (PART. 4), pp. 925-935
  • Coffman, J.A., Rai, R., Loprete, D.M., Cunningham, T., Svetlov, V., Cooper, T.G., Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae (1997) J. Bacteriol., 179, pp. 3416-3429
  • Coleman, S.T., Fang, T.K., Rovinsky, S.A., Turano, F.J., Moye-Rowley, W.S., Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae (2001) J. Biol. Chem., 276, pp. 244-250
  • Cooper, T.G., Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots (2002) FEMS Microbiol. Rev., 26, pp. 223-238
  • Coornaert, D., Vissers, S., Andre, B., The pleiotropic UGA35(DURL) regulatory gene of Saccharomyces cerevisiae: cloning, sequence and identity with the DAL81 gene (1991) Gene., 97, pp. 163-171
  • Crespo, J.L., Powers, T., Fowler, B., Hall, M.N., The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine (2002) Proc. Natl. Acad. Sci. USA., 99, pp. 6784-6789
  • Cunningham, T.S., Cooper, T.G., Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression (1991) Mol. Cell Biol., 11, pp. 6205-6215
  • Cunningham, T.S., Dorrington, R.A., Cooper, T.G., The UGA4 UASNTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae (1994) J. Bacteriol., 176, pp. 4718-4725
  • Cunningham, T.S., Svetlov, V.V., Rai, R., Smart, W., Cooper, T.G., G1n3p is capable of binding to UAS(NTR) elements and activating transcription in Saccharomyces cerevisiae (1996) J. Bacteriol., 178, pp. 3470-3479
  • Daugherty, J.R., Rai, R., el Berry, H.M., Cooper, T.G., Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae (1993) J. Bacteriol., 175, pp. 64-73
  • Davis, M.A., Small, A.J., Kourambas, S., Hynes, M.J., The tamA gene of Aspergillus nidulans contains a putative zinc cluster motif which is not required for gene function (1996) J. Bacteriol., 178, pp. 3406-3409
  • Dhakal, R., Bajpai, V.K., Baek, K.H., Production of gaba (gamma - Aminobutyric acid) by microorganisms: a review (2012) Braz. J. Microbiol., 43, pp. 1230-1241
  • Espeso, E.A., Arst, H.N., Jr., On the mechanism by which alkaline pH prevents expression of an acid-expressed gene (2000) Mol. Cell Biol., 20, pp. 3355-3363
  • Fait, A., Fromm, H., Walter, D., Galili, G., Fernie, A.R., Highway or byway: the metabolic role of the GABA shunt in plants (2008) Trends Plant Sci., 13, pp. 14-19
  • Feehily, C., Karatzas, K.A., Role of glutamate metabolism in bacterial responses towards acid and other stresses (2012) J. Appl. Microbiol., 114, pp. 11-24
  • Friden, P., Schimmel, P., LEU3 of Saccharomyces cerevisiae activates multiple genes for branched-chain amino acid biosynthesis by binding to a common decanucleotide core sequence (1988) Mol. Cell Biol., 8, pp. 2690-2697
  • Garcia, S.C., Moretti, M.B., Batlle, A., Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p (2000) FEMS Microbiol. Lett., 184, pp. 219-224
  • Georis, I., Feller, A., Vierendeels, F., Dubois, E., The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repression-sensitive gene activation (2009) Mol. Cell Biol., 29, pp. 3803-3815
  • Gladkevich, A., Korf, J., Hakobyan, V.P., Melkonyan, K.V., The peripheral GABAergic system as a target in endocrine disorders (2006) Auton Neurosci., 124, pp. 1-8
  • Godard, P., Urrestarazu, A., Vissers, S., Kontos, K., Bontempi, G., van Helden, J., Andre, B., Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae (2007) Mol. Cell Biol., 27, pp. 3065-3086
  • Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Oliver, S.G., Life with 6000 genes (1996) Science., 274 (546), pp. 563-547
  • Grenson, M., 4-Aminobutyric acid (GABA) uptake in Baker's yeast Saccharomyces cerevisiae is mediated by the general amino acid permease, the proline permease and a GABA specific permease integrated into the GABA-catabolic pathway (1987) Life Sci. Adv. Biochem., 6, pp. 35-39
  • Hayakawa, K., Kimura, M., Kasaha, K., Matsumoto, K., Sansawa, H., Yamori, Y., Effect of a γ-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats (2004) Br. J. Nutr., 92, pp. 411-417
  • Hu, Y., Cooper, T.G., Kohlhaw, G.B., The Saccharomyces cerevisiae Leu3 protein activates expression of GDH1, a key gene in nitrogen assimilation (1995) Mol. Cell Biol., 15, pp. 52-57
  • Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., O'Shea, E.K., Global analysis of protein localization in budding yeast (2003) Nature., 425, pp. 686-691
  • Hulme, A.C., Arthington, W., rho-AMINO-butyric acid and alanine in plant tissues (1950) Nature., 165, p. 716
  • Idicula, A.M., Blatch, G.L., Cooper, T.G., Dorrington, R.A., Binding and activation by the zinc cluster transcription factors of Saccharomyces cerevisiae. Redefining the UASGABA and its interaction with Uga3p (2002) J. Biol. Chem., 277, pp. 45977-45983
  • Inoue, K., Shirai, T., Ochiai, H., Kasao, M., Hayakawa, K., Kimura, M., Sansawa, H., Blood-pressure-lowering effect of a novel fermented milk containing γ-aminobutyric acid (GABA) in mild hypertensives (2003) Eur. J. Clin. Nutr., 57, pp. 490-495
  • Jakobs, C., Jaeken, J., Gibson, K.M., Inherited disorders of GABA metabolism (1993) J. Inherit Metab. Dis., 16, pp. 704-715
  • Jamieson, D.J., Oxidative stress responses of the yeast Saccharomyces cerevisiae (1998) Yeast., 14, pp. 1511-1527
  • Kamei, Y., Tamura, T., Yoshida, R., Ohta, S., Fukusaki, E., Mukai, Y., GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomyces cerevisiae (2011) Biochem. Biophys. Res. Commun., 407, pp. 185-190
  • Krishnaswamy, P.R., Giri, K.V., Glutamic acid decarboxylase in Rhodotorula glutinis (1956) Biochem. J., 62, pp. 301-303
  • Krivoruchko, A., Siewers, V., Nielsen, J., Opportunities for yeast metabolic engineering: Lessons from synthetic biology (2011) Biotechnol. J., 6, pp. 262-276
  • Kulkarni, A.A., Abul-Hamd, A.T., Rai, R., El Berry, H., Cooper, T.G., Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae (2001) J. Biol. Chem., 276, pp. 32136-32144
  • Kuruvilla, F.G., Shamji, A.F., Schreiber, S.L., Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors (2001) Proc. Natl. Acad. Sci. USA., 98, pp. 7283-7288
  • Levi, C.E., Cardillo, S.B., Bertotti, S., Rios, C., Correa Garcia, S., Moretti, M.B., GABA induction of the Saccharomyces cerevisiae UGA4 gene depends on the quality of the carbon source: role of the key transcription factors acting in this process (2012) Biochem. Biophys. Res. Commun., 421, pp. 572-577
  • Li, H., Qiu, T., Huang, G., Cao, Y., Production of γ-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation (2010) Microb. Cell Fact., 9, p. 85
  • Ljungdahl, P.O., Amino-acid-induced signalling via the SPS-sensing pathway in yeast (2009) Biochem. Soc. Trans., 37, pp. 242-247
  • Luzzani, C., Cardillo, S.B., Bermudez Moretti, M., Correa Garcia, S., New insights into the regulation of the Saccharomyces cerevisiae UGA4 gene: two parallel pathways participate in carbon-regulated transcription (2007) Microbiology., 153, pp. 3677-3684
  • Magasanik, B., The transduction of the nitrogen regulation signal in Saccharomyces cerevisiae (2005) Proc. Natl. Acad. Sci. USA., 102, pp. 16537-16538
  • Magasanik, B., Kaiser, C.A., Nitrogen regulation in Saccharomyces cerevisiae (2002) Gene., 290, pp. 1-18
  • McKelvey, J., Rai, R., Cooper, T.G., GABA transport in Saccharomyces cerevisiae (1990) Yeast., 6, pp. 263-270
  • Mody, I., De Koninck, Y., Otis, T.S., Soltesz, I., Bridging the cleft at GABA synapses in the brain (1994) Trends Neurosci., 17, pp. 517-525
  • Moretti, M.B., Batlle, A., Garcia, S.C., UGA4 gene encoding the γ-aminobutyric acid permease in Saccharomyces cerevisiae is an acid-expressed gene (2001) Int. J. Biochem. Cell Biol., 33, pp. 1202-1207
  • Nielsen, P.S., van den Hazel, B., Didion, T., de Boer, M., Jorgensen, M., Planta, R.J., Kielland-Brandt, M.J., Andersen, H.A., Transcriptional regulation of the Saccharomyces cerevisiae amino acid permease gene BAP2 (2001) Mol. Gen. Genet., 264, pp. 613-622
  • Noel, J., Turcotte, B., Zinc cluster proteins Leu3p and Uga3p recognize highly related but distinct DNA targets (1998) J. Biol. Chem., 273, pp. 17463-17468
  • Otero, J.M., Cimini, D., Patil, K.R., Poulsen, S.G., Olsson, L., Nielsen, J., Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory (2013) PLoS One., 8, p. e54144
  • Pietruszko, R., Fowden, L., 4-Aminobutyric acid metabolism in plants (1961) Metabolism in yeast. Annals of Botany., 25, pp. 491-511
  • Polotnianka, R., Monahan, B.J., Hynes, M.J., Davis, M.A., TamA interacts with LeuB, the homologue of Saccharomyces cerevisiae Leu3p, to regulate gdhA expression in Aspergillus nidulans (2004) Mol. Genet Genomics., 272, pp. 452-459
  • Ramos, F., el Guezzar, M., Grenson, M., Wiame, J.M., Mutations affecting the enzymes involved in the utilization of 4-aminobutyric acid as nitrogen source by the yeast Saccharomyces cerevisiae (1985) Eur. J. Biochem., 149, pp. 401-404
  • Sarkar, S., Caddick, M.X., Bignell, E., Tilburn, J., Arst, H.N., Jr., Regulation of gene expression by ambient pH in Aspergillus: genes expressed at acid pH (1996) Biochem. Soc. Trans., 24, pp. 360-363
  • Shelp, B.J., Bown, A.W., McLean, M.D., Metabolism and functions of γ-aminobutyric acid (1999) Trends Plant Sci., 4, pp. 446-452
  • Small, A.J., Todd, R.B., Zanker, M.C., Delimitrou, S., Hynes, M.J., Davis, M.A., Functional analysis of TamA, a coactivator of nitrogen-regulated gene expression in Aspergillus nidulans (2001) Mol. Genet Genomics., 265, pp. 636-646
  • Soussi-Boudekou, S., Vissers, S., Urrestarazu, A., Jauniaux, J.A., Andre, B., Gzf3p, a fourth GATA factor involved in nitrogen-regulated transcription in Saccharomyces cerevisiae (1997) Mol. Microbiol., 23, pp. 1157-1168
  • Sulahian, R., Sikder, D., Johnston, S.A., Kodadek, T., The proteasomal ATPase complex is required for stress-induced transcription in yeast (2006) Nucleic. Acids Res., 34, pp. 1351-1357
  • Sylvain, M.A., Liang, X.B., Hellauer, K., Turcotte, B., Yeast Zinc Cluster Proteins Dal81 and Uga3 Cooperate by Targeting Common Coactivators for Transcriptional Activation of gamma-aminobutyrate Responsive Genes (2011) Genetics., 188 (3), pp. 523-534
  • Takahashi, T., Furukawa, A., Hara, S., Mizoguchi, H., Isolation and characterization of sake yeast mutants deficient in γ-aminobutyric acid utilization in sake brewing (2004) J. Biosci. Bioeng., 97, pp. 412-418
  • Talibi, D., Grenson, M., Andre, B., Cis- and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae (1995) Nucleic Acids Res., 23, pp. 550-557
  • Uemura, T., Tomonari, Y., Kashiwagi, K., Igarashi, K., Uptake of GABA and putrescine by UGA4 on the vacuolar membrane in Saccharomyces cerevisiae (2004) Biochem. Biophys. Res. Commun., 315, pp. 1082-1087
  • Vavra, J.J., Johnson, M.J., Aerobic and anaerobic biosynthesis of amino acids by bakers' yeast (1956) J. Biol. Chem., 220, pp. 33-43
  • Wong, C.G., Bottiglieri, T., Snead, O.C., GABA, γ-hydroxybutyric acid, and neurological disease (2003) Ann. Neurol. 54 Suppl, 6, pp. S3-12. , 3rd
  • Zhou, K.M., Kohlhaw, G.B., Transcriptional activator LEU3 of yeast Mapping of the transcriptional activation function and significance of activation domain tryptophans (1990) J. Biol. Chem., 265, pp. 17409-17412

Citas:

---------- APA ----------
Correa-García, S. & Bermúdez-Moretti, M. (2014) . Gaba metabolism in saccharomyces cerevisiae. Gamma-Aminobutyric Acid (GABA): Biosynthesis, Medicinal Uses and Health Effects, 13-28.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816332_v_n_p13_CorreaGarcia [ ]
---------- CHICAGO ----------
Correa-García, S., Bermúdez-Moretti, M. "Gaba metabolism in saccharomyces cerevisiae" . Gamma-Aminobutyric Acid (GABA): Biosynthesis, Medicinal Uses and Health Effects (2014) : 13-28.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816332_v_n_p13_CorreaGarcia [ ]
---------- MLA ----------
Correa-García, S., Bermúdez-Moretti, M. "Gaba metabolism in saccharomyces cerevisiae" . Gamma-Aminobutyric Acid (GABA): Biosynthesis, Medicinal Uses and Health Effects, 2014, pp. 13-28.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816332_v_n_p13_CorreaGarcia [ ]
---------- VANCOUVER ----------
Correa-García, S., Bermúdez-Moretti, M. Gaba metabolism in saccharomyces cerevisiae. Gamma-Aminobutyric Acid (GABA): Biosynth., Med. Uses and Health Eff. 2014:13-28.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816332_v_n_p13_CorreaGarcia [ ]