Parte de libro

Estamos trabajando para incorporar este artículo al repositorio

Abstract:

Glycosylated D-galactose is widely distributed in nature. Less common, L-galactose was found in snail and plant galactans. The difference with the most abundant monosaccharide, D-glucose, is that D-galactose may be found in pyranosic and furanosic configurations. In the animal kingdom, free D-galactose is not present but is a common constituent of glycoproteins and glycolipids, always as pyranose. In fact, D-galactose is incorporated into human milk oligosaccharides in larger quantities than glucose. The ß-(l,4)- galactosyltransferase links galactose to glucose to form lactose, the core for human milk oligosaccharides (HMO). Interestingly, the furanose form has been identified in important human pathogens like Mycobacterium tuberculosis, Aspergillus fumigatus and Trypanosoma cruzi, the agent of Chagas disease. In both configurations, the ß-anomer predominates in the glycans. The absence of galactofuranose (Galf) in mammals and the important role that Galf-containing molecules play in host cell recognition led to the enzymes involved in the Galf metabolic pathways as targets for the development of drugs. Both, Galp and Galf must be activated as the nucleotides UDP-Galp and UDP-Galf for their incorporation into glycans. The nucleotide precursor for L-galactose is GDP-L-galactose, which is formed from GDP-mannose by the action of a 3',5'-epimerase. Also, whereas UDP-Galp may be synthesized from the free monosaccharidesgalactose or glucose, in the latter case through the action of a UDP-Glc-4-epimerase, UDP-Galf is produced from UDP-Galp by the action of a unique enzyme, UDP-Galp mutase (UGM), which catalyzes its conversion into UDP-Galf. In the last two decades several laboratories have been committed to understand the mechanism of action of UGM and its properties. The achievements in this area are presented in this chapter. © 2014 by Nova Science Publishers, Inc. All rights reserved.

Registro:

Documento: Parte de libro
Título:Galactose configurations in nature with emphasis on the biosynthesis of galactofuranose in glycans
Autor:Marino, C.; de Lederkremer, R.M.
Filiación:Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellon II, Ciudad Universitaria, Buenos Aires, Argentina
Año:2014
Página de inicio:107
Página de fin:133
Título revista:Galactose: Structure and Function in Biology and Medicine
Título revista abreviado:Galactose: Struct. and Funct. in Biol. and Med.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816311_v_n_p107_Marino

Referencias:

  • Afroz, S., El-Ganiny, A.M., Sanders, D.A.R., Kaminsky, S.G.W., (2011) Fungal Genet. Biol., 48, pp. 896-903
  • Alderwick, L.J., Dover, L.G., Veerapen, N., Gurcha, S.S., Kremer, L., Roper, D.L., Pathak, A.K., Besra, G.S., (2008) Protein Expression Purif., 58, pp. 332-341
  • Allard, S.T.M., Giraud, M.F., Naismith, J.H., (2001) Cell. Mol. Life Sci., 58, pp. 1650-1665
  • Bakker, H., Kleczka, B., Gerardy-Schahn, R., Routier, F.H., (2005) Biol. Chem, 386, pp. 657-661
  • Beis, K., Srikannathasan, V., Liu, H., Fullerton, S.W.B., Bamford, V.A., Sanders, D.A.R., Whitfield, C., Naismith, J.H., (2005) J. Mol. Biol., 348, pp. 971-982
  • Beláňová, M., Dianišková, P., Brennan, P.J., Completo, G.C., Rose, N.L., Lowary, T.L., Mikušová, K., (2008) J. Bacteriol., 190, pp. 1141-1145
  • Beverley, S.M., Owens, K.L., Showalter, M., Griffith, C.L., Doering, T.L., Jones, V.C., McNeil, M.R., (2005) Eukaryot .Cell, 4, pp. 1147-1154
  • Boechi, L., de Oliveira, C.A., Da Fonseca, I., Kizjakina, K., Sobrado, P., Tanner, J.J., McCammon, J.A., (2013) Protein Sci., 22, pp. 1490-1501
  • Borrelli, S., Zandberg, W.F., Mohan, S., Ko, M., Martinez-Gutierrez, F., Partha, S.K., Sanders, D.A.R., Pinto, B.M., (2010) Int. J. Antimicrob. Agents, 36, pp. 364-368
  • Brockhausen, I., (2006) Drug News and Perspectives, 19, pp. 401-409
  • Caravano, A., Dohi, H., Sinay, P., Vincent, S.P., (2006) Chem.-Eur. J., 12, pp. 3114-3123
  • Chad, J.M., Sarathy, K.P., Gruber, T.D., Addala, E., Kiessling, L.L., Sanders, D.A.R., (2007) Biochemistry, 46, pp. 6723-6732
  • Chlubnova, I., Legentil, L., Dureau, R., Pennec, A., Almendros, M., Daniellou, R., Nugier-Chauvin, C., Ferrières, V., (2012) Carbohydr. Res., 356, pp. 44-61
  • Cren, S., Gurcha, S.S., Blake, A.J., Besra, G.S., Thomas, N.R., (2004) Org. Biomol. Chem., 2, pp. 2418-2420
  • Da Fonseca, I., Kizjakina, K., Sobrado, P., (2013) Arch. Biochem. Biophys., 538, pp. 103-110
  • Damveld, R.A., Franken, A., Arentshorst, M., Punt, P.J., Klis, F.M., van den Hondel, C.A.M.J.J., Ram, A.F.J., (2008) Genetics, 178, pp. 873-881
  • Dhatwalia, R., Singh, H., Oppenheimer, M., Karr, D.B., Nix, J.C., Sobrado, P., Tanner, J.J., (2012) J. Biol. Chem., 287, pp. 9041-9051
  • Dhatwalia, R., Singh, H., Oppenheimer, M., Sobrado, P., Tanner, J.J., (2012) Biochemistry, 51, pp. 4968-4979
  • Dhatwalia, R., Singh, H., Solano, L.M., Oppenheimer, M., Robinson, R.M., Ellerbrock, J.F., Sobrado, P., Tanner, J.J., (2012) J. Am. Chem. Soc., 134, pp. 18132-18138
  • Dureau, R., Robert-Gangneux, F., Gangneux, C., Nugier-Chauvin, J.-P., Legentil, L., Daniellou, R., Ferrières, V., (2010) Carbohydr. Res., 345, pp. 1299-1305
  • Dykhuizen, E.C., May, J.F., Tongpenyai, A., Kiessling, L.L., (2008) J. Am. Chem. Soc., 130, pp. 6706-6707
  • El-Ganiny, A.M., Sanders, D.A., Kaminskyj, S.G., (2008) Fungal Genet. Biol., 45, pp. 1533-1542
  • El-Sayed, (2005) Science, 309, pp. 409-415
  • Engel, J., Schmalhorst, P.S., Dörk-Bousset, T., Ferrières, V., Routier, F.H., (2009) J. Biol. Chem., 284, pp. 33859-33868
  • Errey, J.C., Mukhopadhyay, B., Kartha, K.P.R., Field, R.A., (2004) Chem. Commun., pp. 2706-2707
  • Fontaine, T., Delangle, A., Simenel, C., Coddeville, B., van Vliet, S.J., van Kooyk, Y., (2011) PLoS Pathog, 7, p. e1002372
  • Fullerton, S.W.B., Daff, S., Sanders, D.A.R., Ingledew, W.J., Whitfield, C., Chapman, S.K., Naismith, J.H., (2003) Biochemistry, 42, pp. 2104-2109
  • Gerardy-Schahn, R., Oelmann, S., Bakker, H., (2001) Biochimie, 83, pp. 775-782
  • Ghavami, A., Chen, J.J.W., Pinto, B.M., (2004) Carbohydr. Res., 339, pp. 401-407
  • Gruber, T.D., Westler, W.M., Kiessling, L.L., Forest, K.T., (2009) Biochemistry, 48, pp. 9171-9173
  • Gruber, T.D., Borrok, M.J., Westler, W.M., Forest, K.T., Kiessling, L.L., (2009) J. Mol. Biol., 391, pp. 327-340
  • Guan, S., Clarke, A.J., Whitfield, C., (2001) J. Bacteriol., 183, pp. 3318-3327
  • Hirschberg, C.B., (1998) Annu. Rev. Biochem., 67, pp. 49-69
  • Holden, H.M., Rayment, I., Thoden, J.B., (2003) J. Biol. Chem., 278, pp. 43885-43888
  • Huang, W., Gauld, J.W., (2012) J. Phys. Chem. B, 116, pp. 14040-14050
  • Imamura, A., Lowary, T., (2011) Trends Glycosci. Glyc., 23, pp. 134-152
  • Itoh, K., Huang, Z., Liu, H., (2007) Org. Lett., 9, pp. 879-882
  • Jin, C., (2012) Int. J. Microbiol., 2012, p. 654251
  • Kleczka, B., Lamerz, A.C., Van Zandbergen, G., Wiese, M., (2007) J. Biol. Chem., 282, pp. 10498-10505
  • Komachi, Y., Hatakeyama, S., Motomatsu, H., Futagami, T., Kizjakina, K., Sobrado, P., Ekino, K., Oka, T., (2013) Mol. Microbiol., 90, pp. 1054-1073
  • Köplin, R., Brisson, J.R., Whitfield, C., (1997) J. Biol. Chem., 272, pp. 4121-4128
  • Kremer, L., Dover, L.G., Morehouse, C., Hitchin, P., Everett, M., Morris, H.R., Dell, A., Besra, G.S., (2001) J. Biol. Chem., 276, pp. 26430-26440
  • Latgé, J., (2010) Cell Microbiol., 12, pp. 863-872
  • Latgé, J.P., (2009) Med. Mycol., 47, pp. 104-109
  • Lederkremer, R.M., Nahmad, V., Varela, O., (1994) J. Org. Chem., 59, pp. 690-692
  • Lederkremer, R.M., Colli, W., (1995) Glycobiology, 5, pp. 547-552
  • Lee, M.J., Gravelat, F.N., Ceronel, R.P., Baptista, S.D., Campoli, P.V., Choe, S.-I., Kravtsov, I., Sheppard, D.C., (2014) J. Biol. Chem., 289, pp. 1243-1256
  • Lee, R.E., Smith, M.D., Pickering, L., Fleet, G.W.J., (1999) Tetrahedron Lett., 40, pp. 8689-8692
  • Lee, R.E., Smith, M.D., Nash, R.J., Griffiths, R.C., McNeil, M.R., Grewal, R.K., Yan, W., Fleet, G.W.J., (1997) Tetrahedron Lett., 38, pp. 6733-6736
  • Liautard, V., Christina, A.E., Desvergnes, V., Martin, O.R., (2006) J. Org. Chem., 71, pp. 7337-7345
  • Lillelund, V.H., Jensen, H.H., Liang, X., Bols, M., (2002) Chem. Rev., 102, pp. 515-553
  • MacRae, J.I., Obado, S.O., Turnock, D.C., Roper, J.R., Kierans, M., Kelly, J.M., Ferguson, M.A.J., (2006) Mol. Biochem. Parasitol., 147, pp. 126-136
  • Madeira da Silva, L., Owens, K.L., Murta, S.M., Beverley, S.M., (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 7583-7588
  • Marino, C., Baldoni, L., (2014) Chem Biochem., 15, pp. 188-204
  • Marino, C., Gallo-Rodriguez, C., Lederkremer, R.M., (2012) Glycans: Biochemistry, Characterization and Applications, pp. 207-268. , (Ed.: H. M. Mora-Montes), Nova Science Publishers
  • Marino, K., Marino, C., Lima, C., Baldoni, L., Lederkremer, R.M., (2005) Eur. J. Org. Chem., pp. 2958-2964
  • Marlow, A.L., Kiessling, L.L., (2001) Org. Lett, 3, pp. 2517-2519
  • May, J.F., Levengood, M.R., Splain, R.A., Brown, C.D., Kiessling, L.L., (2012) Biochemistry, 51, pp. 1148-1159
  • N'Go, I., Golten, S., Ardá, A., Canada, J., Jimenez-Barbero, J., Linclau, B., Vincent, S., (2014) Chem. Eur. J., 20, pp. 106-112
  • Nassau, P.M., Martin, S.L., Brown, R.E., Weston, A., Monsey, D., McNeil, M.R., Duncan, K., (1996) J. Bacteriol., 178, pp. 1047-1052
  • Nikaido, H., Sarvas, M., (1971) J. Bacteriol., 105, pp. 1063-1072
  • Novelli, J.F., Chaudhary, K., Canovas, J., Benner, J.S., Madinger, C.L., Kelly, P., Hodgkin, J., Carlow, C.K., (2009) Dev. Biol., 335, pp. 340-355
  • Oppenheimer, M., Poulin, M.B., Lowary, T.L., Helm, R.F., Sobrado, P., (2010) Arch. Biochem. Biophys., 502, pp. 31-38
  • Oppenheimer, M., Valenciano, A.L., Kizjakina, K., Qi, J., Sobrado, P., (2012) PLoS ONE, 7, p. e32918
  • Oppenheimer, M., Valenciano, A.L., Sobrado, P., Enzyme Res:, p. 415976
  • Oppenheimer, M., Valenciano, A.L., Sobrado, P., (2011) Biochem. Biophys. Res. Commun., 407, pp. 552-556
  • Pan, F., Jackson, M., Ma, Y., McNeil, M.R., (2001) J. Bacteriol., 183, pp. 3991-3998
  • Partha, S.K., van Straaten, K.E., Sanders, D.A.R., (2009) J. Mol. Biol., 18 (394), pp. 864-877
  • Peltier, P., Beláňová, M., Dianisková, P., Zhou, R., Zheng, R.B., Pearcey, J.A., Joe, M., Mikusova, K., (2010) Chem. Biol., 17, pp. 1356-1366
  • Peltier, P., Euzen, R., Daniellou, R., Nugier-Chauvin, C., Ferrières, V., (2008) Carbohydr. Res., 343, pp. 1897-1923
  • Poulin, M.B., Zhou, R., Lowary, T.L., (2012) Org. Biomol. Chem., 10, pp. 4074-4087
  • Poulin, M.B., Lowary, T.L., (2010) Methods Enzymol., 478, pp. 389-411
  • Ram, B.P., Munjal, D.D., (1985) CRC Crit. Rev. Biochem., 17, pp. 257-311
  • Richards, M.R., Lowary, T.L., (2009) ChemBioChem., 10, pp. 1920-1938
  • Rose, M.N.L., Completo, G.C., Lin, S.J., McNeil, M., Palcic, M.M., Lowary, T.L., (2006) J. Am. Chem. Soc., 128, pp. 6721-6729
  • Sanders, D.A.R., Staines, A.G., McMahon, S.A., McNeil, M.R., Whitfield, C., Naismith, J.H., (2001) Nat. Struct. Biol., 8, pp. 858-863
  • Scherman, M.S., Winans, K.A., Stern, R.J., Jones, V., Bertozzi, C.R., McNeil, M.R., (2003) Antimicrob. Agents Chemother., 47, pp. 378-382
  • Schmalhorst, P., Krappmann, S., Vervecken, W., Rohde, M., Müller, M., Braus, G.H., Contreras, R., Routier, F.H., (2008) Eukaryotic Cell, 7, pp. 1268-1277
  • Snitynsky, R.B., Lowary, T.L., (2014) Org. Lett., 16, pp. 212-215
  • Soltero-Higgin, M., Carlson, E.E., Gruber, T.D., Kiessling, L., (2004) Nat. Struct. Mol. Biol., 11, pp. 539-543
  • Spath, G.F., Epstein, L., Leader, B., Singer, S.M., Avila, H.A., Turco, S.J., Beverley, S.M., (2000) PNAS, 97, pp. 9258-9263
  • Spath, G.F., Garraway, L.A., Turco, S.J., Beverley, S.M., (2003) PNAS100, pp. 9536-9541
  • Stevenson, G., Neal, B., Liu, D., Hobbs, M., Packer, N.H., Batley, M., Redmond, J.W., Reeves, P., (1994) J. Bacteriol., 176, pp. 4144-4156
  • Stoco, P.H., Aresi, C., Lückemeyer, D.D., Sperandio, M.M., Marques Sincero, T.C., Steindel, M., Miletti, L.C., Grisard, E.C., (2012) Exp. Parasitol., 130, pp. 246-262
  • Sun, H.G., Ruszczycky, M.W., Chang, W.C., Thibodeaux, C.J., Liu, H.W., (2012) J. Biol. Chem., 287, pp. 4602-4608
  • Suzuki, E., Tanaka, A.K., Toledo, M.S., Levery, S.B., Straus, A.H., Takahashi, H.K., (2008) Biochim. Biophys. Acta, 1780, pp. 362-369
  • Szczepina, M.G., Zheng, R.B., Completo, G.C., Lowary, T.L., Pinto, B.M., (2009) ChemBioChem, 10, pp. 2052-2059
  • Taha, H.A., Richards, M.R., Lowary, T.L., (2012) Chem. Rev., 113, pp. 1851-1876
  • Tanner, J.J., Boechi, L., McCammonb, J.A., Sobrado, P., (2013) Arch. Biochem. Biophys.
  • Taylor, M.E., Drickamer, K., (2003) Introduction to Glycobiology, , Oxford; New York; Oxford University Press, 3th Ed
  • Tefsen, B., Ram, A.F., van Die, I., Routier, F.H., (2012) Glycobiology, 22, pp. 456-469
  • Thibodeaux, C.J., Melançon, C.E., III, Liu, H.-W., (2008) Angew. Chem. Int. Ed., 47, pp. 9814-9859
  • Trunkfield, A.E., Gurcha, S.S., Besra, G.S., Bugg, T.D.H., (2010) Bioorg. Med. Chem., 18, pp. 2651-2663
  • Tsvetkov, Y.E., Nikolaev, A.V., (2000) J. Chem. Soc., Perkin Trans., 1, pp. 889-8912
  • van Straaten, K.E., Routier, F.H., Sanders, D.A., (2012) Acta Crystallogr., 68, pp. 455-459. , (F)
  • van Straaten, K.E., Routier, F.H., Sanders, D.A.R., (2012) J. Biol Chem., 287, pp. 10780-10790
  • Veerapen, N., Yuan, Y., Sanders, D.A.R., Pinto, B.M., (2004) Carbohydr. Res., 339, pp. 2205-2217
  • Wesener, D.A., May, J.F., Huffman, E.M., Kiessling, L.L., (2013) Biochemistry, 52, pp. 4391-4398
  • Weston, A., Stern, R.J., Lee, R.E., Nassau, P.M., Monsey, D., Martin, S.L., Scherman, M.S., McNeil, M.R., (1998) Tuber. Lung. Dis., 78, pp. 123-131
  • Wheatley, R.W., Zheng, R.B., Lowary, T.L., Ng, K.K.S., (2012) J. Biol.Chem., 287, pp. 28132-28143
  • Wing, C., Errey, J.C., Mukhopadhyay, B., Blanchard, J.S., Field, R.A., (2006) Org. Biomol. Chem., 4, pp. 3945-3950
  • Yao, X., Bleile, D.W., Yuan, Y., Chao, J., Sarathy, K.P., Sanders, D.A., Pinto, B.M., O'Neill, M.A., (2009) Proteins, 74, pp. 972-979
  • Yuan, Y., Bleile, D.W., Wen, X., Sanders, D.A., Itoh, K., Liu, H.W., Pinto, B.M., (2008) J. Am. Chem. Soc., 130, pp. 3157-3168
  • Yuan, Y., Wen, X., Sanders, D.A.R., Pinto, B.M., (2005) Biochemistry, 44, pp. 14080-14089
  • Zhang, K., Barron, T., Turco, S.J., Beverley, S.M., (2004) Mol. Biochem. Parasitol., 136, pp. 11-23
  • Zhang, Q., Liu, H.-W., (2000) J. Am. Chem. Soc., 122, pp. 9065-9070

Citas:

---------- APA ----------
Marino, C. & de Lederkremer, R.M. (2014) . Galactose configurations in nature with emphasis on the biosynthesis of galactofuranose in glycans. Galactose: Structure and Function in Biology and Medicine, 107-133.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816311_v_n_p107_Marino [ ]
---------- CHICAGO ----------
Marino, C., de Lederkremer, R.M. "Galactose configurations in nature with emphasis on the biosynthesis of galactofuranose in glycans" . Galactose: Structure and Function in Biology and Medicine (2014) : 107-133.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816311_v_n_p107_Marino [ ]
---------- MLA ----------
Marino, C., de Lederkremer, R.M. "Galactose configurations in nature with emphasis on the biosynthesis of galactofuranose in glycans" . Galactose: Structure and Function in Biology and Medicine, 2014, pp. 107-133.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816311_v_n_p107_Marino [ ]
---------- VANCOUVER ----------
Marino, C., de Lederkremer, R.M. Galactose configurations in nature with emphasis on the biosynthesis of galactofuranose in glycans. Galactose: Struct. and Funct. in Biol. and Med. 2014:107-133.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816311_v_n_p107_Marino [ ]