Parte de libro

Quintá, H.R.; Galigniana, N.M.; Daneri-Becerra, C.; Lagadari, M.; Galigniana, M.D. "Microtubule organization. The housekeeping role of heat-shock proteins and immunophilins" (2012) Tubulin: Structure, Functions and Roles in Disease:41-68
Estamos trabajando para incorporar este artículo al repositorio

Abstract:

Cytoskeleton is the basic scaffold of the cell in which other subcellular components are spatially arranged, such that they are able to communicate efficiently between the internal and external environments of the cell. Cytoskeletal structure is continually remodeled to accommodate normal cell growth and to respond to pathophysiological cues. As a consequence, several cytoskeleton-interacting proteins become involved in a variety of cellular processes such as cell growth and division, cell movement, vesicle transportation, cellular organelle location and function, localization and distribution of membrane receptors, and cell-cell communication. Molecular chaperones and immunophilins are counted among the most important proteins that interact closely with the cytoskeleton network, in particular with microtubules and microtubule-associated factors. In several situations, chaperones and immunophilins work together as a functionally active heterocomplex, although both types of proteins also show independent actions. In circumstances where homeostasis is affected by environmental stresses or due to genetic alterations, chaperone proteins help to stabilize the system. Molecular chaperones facilitate the assembly, disassembly and/or folding/refolding of cytoskeletal proteins, so they prevent aberrant protein aggregation. Nonetheless, the role of chaperones is not limited to solve abnormal situations. They also have an active participation during the normal differentiation process of the cell and are key factors for many structural and functional rearrangements during this course of action. A similar observation is also valid for immunophilins. Although the folding system for microtubules was discovered nearly two decades ago, our understanding of the complex quality control pathway of these filaments is still poorly understood and there are many unanswered questions that remain to be elucidated. Microtubule modifications leading to altered localization nuclear factors may result in loss- or gain-of-function of such factors, which affects the cell cycle and cell development. Therefore, microtubules are attractive therapeutic targets, particularly to prevent pathological situations such as rapidly dividing tumors or to favor the process of cell differentiation in other cases. In this chapter we will address some mechanistic aspects of the key regulatory functions of heat-shock proteins and immunophilins in the microtubule network of neurons and cancer cells. © 2012 by Nova Science Publishers, Inc. All rights reserved.

Registro:

Documento: Parte de libro
Título:Microtubule organization. The housekeeping role of heat-shock proteins and immunophilins
Autor:Quintá, H.R.; Galigniana, N.M.; Daneri-Becerra, C.; Lagadari, M.; Galigniana, M.D.
Filiación:Instituto de Biología y Medicina Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina
Año:2012
Página de inicio:41
Página de fin:68
Título revista:Tubulin: Structure, Functions and Roles in Disease
Título revista abreviado:Tubulin: Struct., Funct. and Roles in Dis.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816210_v_n_p41_Quinta

Referencias:

  • Adachi, H., Katsuno, M., Minamiyama, M., Sang, C., Pagoulatos, G., Angelidis, C., Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein (2003) J Neurosci, 23 (6), pp. 2203-2211
  • Albanese, V., Yam, A.Y., Baughman, J., Parnot, C., Frydman, J., Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells (2006) Cell, 124 (1), pp. 75-88
  • Ammer, A.G., Weed, S.A., Cortactin branches out: roles in regulating protrusive actin dynamics (2008) Cell Motil Cytoskeleton, 65 (9), pp. 687-707
  • Aravind, L., Koonin, E.V., Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches (1999) J Mol Biol, 287 (5), pp. 1023-1040
  • Aylett, C.H., Wang, Q., Michie, K.A., Amos, L.A., Lowe, J., Filament structure of bacterial tubulin homologue TubZ (2010) Proc Natl Acad Sci U S A, 107 (46), pp. 19766-19771
  • Bailey, C.K., Andriola, I.F., Kampinga, H.H., Merry, D.E., Molecular chaperones enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular atrophy (2002) Hum Mol Genet, 11 (5), pp. 515-523
  • Banerjee, A., Periyasamy, S., Wolf, I.M., Hinds Jr, T.D., Yong, W., Shou, W., Control of glucocorticoid and progesterone receptor subcellular localization by the ligand-binding domain is mediated by distinct interactions with tetratricopeptide repeat proteins (2008) Biochemistry, 47 (39), pp. 10471-10480
  • Basso, A.D., Solit, D.B., Chiosis, G., Giri, B., Tsichlis, P., Rosen, N., Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function (2002) J Biol Chem, 277 (42), pp. 39858-39866
  • Bechtold, D.A., Brown, I.R., Induction of Hsp27 and Hsp32 stress proteins and vimentin in glial cells of the rat hippocampus following hyperthermia (2003) Neurochem Res, 28 (8), pp. 1163-1173
  • Bercovich, B., Stancovski, I., Mayer, A., Blumenfeld, N., Laszlo, A., Schwartz, A.L., Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70 (1997) J Biol Chem, 272 (14), pp. 9002-9010
  • Bivi, N., Romanello, M., Harrison, R., Clarke, I., Hoyle, D.C., Moro, L., Identification of secondary targets of N-containing bisphosphonates in mammalian cells via parallel competition analysis of the barcoded yeast deletion collection (2009) Genome Biol, 10 (9), pp. R93
  • Bjorkdahl, C., Sjogren, M.J., Zhou, X., Concha, H., Avila, J., Winblad, B., Small heat shock proteins Hsp27 or alphaB-crystallin and the protein components of neurofibrillary tangles: tau and neurofilaments (2008) J Neurosci Res, 86 (6), pp. 1343-1352
  • Bork, P., Sander, C., Valencia, A., An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins (1992) Proc Natl Acad Sci U S A, 89 (16), pp. 7290-7294
  • Brackley, K.I., Grantham, J., Subunits of the chaperonin CCT interact with F-actin and influence cell shape and cytoskeletal assembly (2010) Exp Cell Res, 316 (4), pp. 543-553
  • Broadley, S.A., Hartl, F.U., The role of molecular chaperones in human misfolding diseases (2009) FEBS Lett, 583 (16), pp. 2647-2653
  • Burke, D., Gasdaska, P., Hartwell, L., Dominant effects of tubulin overexpression in Saccharomyces cerevisiae (1989) Mol Cell Biol, 9 (3), pp. 1049-1059
  • Byrd, C.A., Bornmann, W., Erdjument-Bromage, H., Tempst, P., Pavletich, N., Rosen, N., Heat shock protein 90 mediates macrophage activation by Taxol and bacterial lipopolysaccharide (1999) Proc Natl Acad Sci U S A, 96 (10), pp. 5645-5650
  • Cabeen, M.T., Jacobs-Wagner, C., The bacterial cytoskeleton (2010) Annu Rev Genet, 44, pp. 365-392
  • Capetanaki, Y., Bloch, R.J., Kouloumenta, A., Mavroidis, M., Psarras, S., Muscle intermediate filaments and their links to membranes and membranous organelles (2007) Exp Cell Res, 313 (10), pp. 2063-2076
  • Colo, G.P., Rubio, M.F., Nojek, I.M., Werbajh, S.E., Echeverria, P.C., Alvarado, C.V., The p160 nuclear receptor co-activator RAC3 exerts an anti-apoptotic role through a cytoplasmatic action (2008) Oncogene, 27 (17), pp. 2430-2444
  • Cox, M.B., Riggs, D.L., Hessling, M., Schumacher, F., Buchner, J., Smith, D.F., FK506-binding protein 52 phosphorylation: a potential mechanism for regulating steroid hormone receptor activity (2007) Mol Endocrinol, 21 (12), pp. 2956-2967
  • Creppe, C., Malinouskaya, L., Volvert, M.L., Gillard, M., Close, P., Malaise, O., Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin (2009) Cell, 136 (3), pp. 551-564
  • Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z., Nardai, G., The 90-kDa molecular chaperone family: structure, function, and clinical applications (1998) A comprehensive review. Pharmacol Ther, 79 (2), pp. 129-168
  • Cuellar, J., Martin-Benito, J., Scheres, S.H., Sousa, R., Moro, F., Lopez-Vinas, E., The structure of CCT-Hsc70 NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin (2008) Nat Struct Mol Biol, 15 (8), pp. 858-864
  • Czar, M.J., Owens-Grillo, J.K., Yem, A.W., Leach, K.L., Deibel Jr, M.R., Welsh, M.J., The hsp56 immunophilin component of untransformed steroid receptor complexes is localized both to microtubules in the cytoplasm and to the same nonrandom regions within the nucleus as the steroid receptor (1994) Mol Endocrinol, 8 (12), pp. 1731-1741
  • Czar, M.J., Welsh, M.J., Pratt, W.B., Immunofluorescence localization of the 90-kDa heat-shock protein to cytoskeleton (1996) Eur J Cell Biol, 70 (4), pp. 322-330
  • Chadli, A., Bouhouche, I., Sullivan, W., Stensgard, B., McMahon, N., Catelli, M.G., Dimerization and N-terminal domain proximity underlie the function of the molecular chaperone heat shock protein 90 (2000) Proc Natl Acad Sci U S A, 97 (23), pp. 12524-12529
  • Chambraud, B., Belabes, H., Fontaine-Lenoir, V., Fellous, A., Baulieu, E.E., The immunophilin FKBP52 specifically binds to tubulin and prevents microtubule formation (2007) Faseb J, 21 (11), pp. 2787-2797
  • Chambraud, B., Sardin, E., Giustiniani, J., Dounane, O., Schumacher, M., Goedert, M., A role for FKBP52 in Tau protein function (2010) Proc Natl Acad Sci U S A, 107 (6), pp. 2658-2663
  • Chan, H.Y., Warrick, J.M., Gray-Board, G.L., Paulson, H.L., Bonini, N.M., Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila (2000) Hum Mol Genet, 9 (19), pp. 2811-2820
  • Cheung, C.H., Chen, H.H., Cheng, L.T., Lyu, K.W., Kanwar, J.R., Chang, J.Y., Targeting Hsp90 with small molecule inhibitors induces the over-expression of the anti-apoptotic molecule, survivin, in human A549, HONE-1 and HT-29 cancer cells (2010) Mol Cancer, 9, p. 77
  • Dabir, D.V., Trojanowski, J.Q., Richter-Landsberg, C., Lee, V.M., Forman, M.S., Expression of the small heat-shock protein alphaB-crystallin in tauopathies with glial pathology (2004) Am J Pathol, 164 (1), pp. 155-166
  • Davies, T.H., Sanchez, E.R., Fkbp52 (2005) Int J Biochem Cell Biol, 37 (1), pp. 42-47
  • Defeu Soufo, H.J., Graumann, P.L., Dynamic movement of actin-like proteins within bacterial cells (2004) EMBO Rep, 5 (8), pp. 789-794
  • DeZwaan, D.C., Freeman, B.C., HSP90 manages the ends (2010) Trends Biochem Sci, 35 (7), pp. 384-391
  • Dickey, C.A., Kamal, A., Lundgren, K., Klosak, N., Bailey, R.M., Dunmore, J., The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins (2007) J Clin Invest, 117 (3), pp. 648-658
  • Ding, A.H., Porteu, F., Sanchez, E., Nathan, C.F., Shared actions of endotoxin and taxol on TNF receptors and TNF release (1990) Science, 248 (4953), pp. 370-372
  • Donnelly, A.C., Mays, J.R., Burlison, J.A., Nelson, J.T., Vielhauer, G., Holzbeierlein, J., The design, synthesis, and evaluation of coumarin ring derivatives of the novobiocin scaffold that exhibit antiproliferative activity (2008) J Org Chem, 73 (22), pp. 8901-8920
  • Dou, F., Netzer, W.J., Tanemura, K., Li, F., Hartl, F.U., Takashima, A., Chaperones increase association of tau protein with microtubules (2003) Proc Natl Acad Sci U S A, 100 (2), pp. 721-726
  • Duan, J., Gorovsky, M.A., Both carboxy-terminal tails of alpha- and beta-tubulin are essential, but either one will suffice (2002) Curr Biol, 12 (4), pp. 313-316
  • Dunn, A.Y., Melville, M.W., Frydman, J., Review: cellular substrates of the eukaryotic chaperonin TRiC/CCT (2001) J Struct Biol, 135 (2), pp. 176-184
  • Echeverria, P.C., Picard, D., Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility (2010) Biochim Biophys Acta, 1803 (6), pp. 641-649
  • Elbi, C., Walker, D.A., Lewis, M., Romero, G., Sullivan, W.P., Toft, D.O., A novel in situ assay for the identification and characterization of soluble nuclear mobility factors (2004) Sci STKE, 2004 (238), pp. pl10
  • Elliott, E., Tsvetkov, P., Ginzburg, I., BAG-1 associates with Hsc70.Tau complex and regulates the proteasomal degradation of Tau protein (2007) J Biol Chem, 282 (51), pp. 37276-37284
  • Erickson, H.P., Evolution of the cytoskeleton (2007) Bioessays, 29 (7), pp. 668-677
  • Feldman, D.E., Spiess, C., Howard, D.E., Frydman, J., Tumorigenic mutations in VHL disrupt folding in vivo by interfering with chaperonin binding (2003) Mol Cell, 12 (5), pp. 1213-1224
  • Fisher, B.R., Heredia, D.J., Brown, K.M., Heat-induced alterations in embryonic cytoskeletal and stress proteins precede somite malformations in rat embryos (1996) Teratog Carcinog Mutagen, 16 (1), pp. 49-64
  • Fisher, B.R., Heredia, D.J., Brown, K.M., Induction of hsp72 in heat-treated rat embryos: a tissue-specific response (1995) Teratology, 52 (2), pp. 90-100
  • Fortugno, P., Beltrami, E., Plescia, J., Fontana, J., Pradhan, D., Marchisio, P.C., Regulation of survivin function by Hsp90 (2003) Proc Natl Acad Sci U S A, 100 (24), pp. 13791-13796
  • Fukata, Y., Itoh, T.J., Kimura, T., Menager, C., Nishimura, T., Shiromizu, T., CRMP-2 binds to tubulin heterodimers to promote microtubule assembly (2002) Nat Cell Biol, 4 (8), pp. 583-591
  • Fulda, S., Debatin, K.M., Sensitization for anticancer drug-induced apoptosis by the chemopreventive agent resveratrol (2004) Oncogene, 23 (40), pp. 6702-6711
  • Galigniana, M.D., Echeverría, P.C., Erlejman, A.G., Piwien-Pilipuk, G., Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore (2010) Nucleus, 1, pp. 299-308
  • Galigniana, M.D., Erlejman, A.G., Monte, M., Gomez-Sanchez, C., Piwien-Pilipuk, G., The hsp90-FKBP52 Complex Links the Mineralocorticoid Receptor to Motor Proteins and Persists Bound to the Receptor in Early Nuclear Events (2010) Mol Cell Biol, 30 (5), pp. 1285-1298
  • Galigniana, M.D., Harrell, J.M., Murphy, P.J., Chinkers, M., Radanyi, C., Renoir, J.M., Binding of hsp90-associated immunophilins to cytoplasmic dynein: direct binding and in vivo evidence that the peptidylprolyl isomerase domain is a dynein interaction domain (2002) Biochemistry, 41 (46), pp. 13602-13610
  • Galigniana, M.D., Harrell, J.M., O'Hagen, H.M., Ljungman, M., Pratt, W.B., Hsp90-binding immunophilins link p53 to dynein during p53 transport to the nucleus (2004) J Biol Chem, 279 (21), pp. 22483-22489
  • Galigniana, M.D., Housley, P.R., DeFranco, D.B., Pratt, W.B., Inhibition of glucocorticoid receptor nucleocytoplasmic shuttling by okadaic acid requires intact cytoskeleton (1999) J Biol Chem, 274 (23), pp. 16222-16227
  • Galigniana, M.D., Morishima, Y., Gallay, P.A., Pratt, W.B., Cyclophilin-A is bound through its peptidylprolyl isomerase domain to the cytoplasmic dynein motor protein complex (2004) J Biol Chem, 279 (53), pp. 55754-55759
  • Galigniana, M.D., Radanyi, C., Renoir, J.M., Housley, P.R., Pratt, W.B., Evidence that the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus (2001) J Biol Chem, 276 (18), pp. 14884-14889
  • Gallo, L.I., Ghini, A.A., Pilipuk, G.P., Galigniana, M.D., Differential recruitment of tetratricorpeptide repeat domain immunophilins to the mineralocorticoid receptor influences both heat-shock protein 90-dependent retrotransport and hormone-dependent transcriptional activity (2007) Biochemistry, 46 (49), pp. 14044-14057
  • Gao, Y.S., Hubbert, C.C., Lu, J., Lee, Y.S., Lee, J.Y., Yao, T.P., Histone deacetylase 6 regulates growth factor-induced actin remodeling and endocytosis (2007) Mol Cell Biol, 27 (24), pp. 8637-8647
  • Gold, B.G., Densmore, V., Shou, W., Matzuk, M.M., Gordon, H.S., Immunophilin FK506-binding protein 52 (not FK506-binding protein 12) mediates the neurotrophic action of FK506 (1999) J Pharmacol Exp Ther, 289 (3), pp. 1202-1210
  • Gold, B.G., Villafranca, J.E., Neuroimmunophilin ligands: the development of novel neuroregenerative/ neuroprotective compounds (2003) Curr Top Med Chem, 3 (12), pp. 1368-1375
  • Goldbaum, O., Riedel, M., Stahnke, T., Richter-Landsberg, C., The small heat shock protein HSP25 protects astrocytes against stress induced by proteasomal inhibition (2009) Glia, 57 (14), pp. 1566-1577
  • Goldfarb, S.B., Kashlan, O.B., Watkins, J.N., Suaud, L., Yan, W., Kleyman, T.R., Differential effects of Hsc70 and Hsp70 on the intracellular trafficking and functional expression of epithelial sodium channels (2006) Proc Natl Acad Sci U S A, 103 (15), pp. 5817-5822
  • Grad, I., McKee, T.A., Ludwig, S.M., Hoyle, G.W., Ruiz, P., Wurst, W., The Hsp90 cochaperone p23 is essential for perinatal survival (2006) Mol Cell Biol, 26 (23), pp. 8976-8983
  • Grantham, J., Brackley, K.I., Willison, K.R., Substantial CCT activity is required for cell cycle progression and cytoskeletal organization in mammalian cells (2006) Exp Cell Res, 312 (12), pp. 2309-2324
  • Green, K.J., Bohringer, M., Gocken, T., Jones, J.C., Intermediate filament associated proteins (2005) Adv Protein Chem, 70, pp. 143-202
  • Gross, K.L., Westberry, J.M., Hubler, T.R., Sadosky, P.W., Singh, R.J., Taylor, R.L., Androgen resistance in squirrel monkeys (Saimiri spp.) (2008) Comp Med, 58 (4), pp. 381-388
  • Guillozet-Bongaarts, A.L., Garcia-Sierra, F., Reynolds, M.R., Horowitz, P.M., Fu, Y., Wang, T., Tau truncation during neurofibrillary tangle evolution in Alzheimer's disease (2005) Neurobiol Aging, 26 (7), pp. 1015-1022
  • Hammond, J.W., Cai, D., Verhey, K.J., Tubulin modifications and their cellular functions (2008) Curr Opin Cell Biol, 20 (1), pp. 71-76
  • Hardy, J., Pittman, A., Myers, A., Fung, H.C., de Silva, R., Duckworth, J., Tangle diseases and the tau haplotypes (2006) Alzheimer Dis Assoc Disord, 20 (1), pp. 60-62
  • Hartl, F.U., Hayer-Hartl, M., Converging concepts of protein folding in vitro and in vivo (2009) Nat Struct Mol Biol, 16 (6), pp. 574-581
  • Herrmann, H., Strelkov, S.V., Burkhard, P., Aebi, U., Intermediate filaments: primary determinants of cell architecture and plasticity (2009) J Clin Invest, 119 (7), pp. 1772-1783
  • Hinds Jr, T.D., Sanchez, E.R., Protein phosphatase 5 (2008) Int J Biochem Cell Biol, 40 (11), pp. 2358-2362
  • Horwich, A.L., Farr, G.W., Fenton, W.A., GroEL-GroES-mediated protein folding (2006) Chem Rev, 106 (5), pp. 1917-1930
  • Ishibashi, Y., Takahashi, M., Isomatsu, Y., Qiao, F., Iijima, Y., Shiraishi, H., Role of microtubules versus myosin heavy chain isoforms in contractile dysfunction of hypertrophied murine cardiocytes (2003) Am J Physiol Heart Circ Physiol, 285 (3), pp. H1270-1285
  • Jakob, U., Muse, W., Eser, M., Bardwell, J.C., Chaperone activity with a redox switch (1999) Cell, 96 (3), pp. 341-352
  • Jana, N.R., Tanaka, M., Wang, G., Nukina, N., Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity (2000) Hum Mol Genet, 9 (13), pp. 2009-2018
  • Jinwal, U.K., Koren III, J., Borysov, S.I., Schmid, A.B., Abisambra, J.F., Blair, L.J., The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules (2010) J Neurosci, 30 (2), pp. 591-599
  • Jo, H., Loison, F., Hattori, H., Silberstein, L.E., Yu, H., Luo, H.R., Natural product Celastrol destabilizes tubulin heterodimer and facilitates mitotic cell death triggered by microtubule-targeting anti-cancer drugs (2010) PLoS One, 5 (4), pp. e10318
  • Kadota, Y., Shirasu, K., Guerois, R., NLR sensors meet at the SGT1-HSP90 crossroad (2010) Trends Biochem Sci, 35 (4), pp. 199-207
  • Kampinga, H.H., Craig, E.A., The HSP70 chaperone machinery: J proteins as drivers of functional specificity (2010) Nat Rev Mol Cell Biol, 11 (8), pp. 579-592
  • Kang, C.B., Hong, Y., Dhe-Paganon, S., Yoon, H.S., FKBP family proteins: immunophilins with versatile biological functions (2008) Neurosignals, 16 (4), pp. 318-325
  • Karagoz, G.E., Duarte, A.M., Ippel, H., Uetrecht, C., Sinnige, T., van Rosmalen, M., N-terminal domain of human Hsp90 triggers binding to the cochaperone p23 (2011) Proc Natl Acad Sci U S A, 108 (2), pp. 580-585
  • Kaverina, I., Krylyshkina, O., Beningo, K., Anderson, K., Wang, Y.L., Small, J.V., Tensile stress stimulates microtubule outgrowth in living cells (2002) J Cell Sci, 115 (PART 11), pp. 2283-2291
  • Khatau, S.B., Kim, D.H., Hale, C.M., Bloom, R.J., Wirtz, D., The perinuclear actin cap in health and disease (2010) Nucleus, 1 (4), pp. 337-342
  • Klucken, J., Shin, Y., Masliah, E., Hyman, B.T., McLean, P.J., Hsp70 Reduces alpha-Synuclein Aggregation and Toxicity (2004) J Biol Chem, 279 (24), pp. 25497-25502
  • Koren, J., Jinwal, U.K., Davey, Z., Kiray, J., Arulselvam, K., Dickey, C.A., Bending Tau into Shape: The Emerging Role of Peptidyl-Prolyl Isomerases in Tauopathies (2011) Mol Neurobiol.
  • Kovacs, J.J., Murphy, P.J., Gaillard, S., Zhao, X., Wu, J.T., Nicchitta, C.V., HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor (2005) Mol Cell, 18 (5), pp. 601-607
  • Kumarapeli, A.R., Wang, X., Genetic modification of the heart: chaperones and the cytoskeleton (2004) J Mol Cell Cardiol, 37 (6), pp. 1097-1109
  • Lee, Y.C., Lai, Y.K., Integrity of intermediate filaments is associated with the development of acquired thermotolerance in 9L rat brain tumor cells (1995) J Cell Biochem, 57 (1), pp. 150-162
  • Liao, G., Gundersen, G.G., Kinesin is a candidate for cross-bridging microtubules and intermediate filaments (1998) Selective binding of kinesin to detyrosinated tubulin and vimentin. J Biol Chem, 273 (16), pp. 9797-9803
  • Lin, Y.F., Tsai, W.P., Liu, H.G., Liang, P.H., Intracellular beta-tubulin/chaperonin containing TCP1-beta complex serves as a novel chemotherapeutic target against drug-resistant tumors (2009) Cancer Res, 69 (17), pp. 6879-6888
  • Liu, F., Grundke-Iqbal, I., Iqbal, K., Gong, C.X., Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation (2005) Eur J Neurosci, 22 (8), pp. 1942-1950
  • Luo, W., Dou, F., Rodina, A., Chip, S., Kim, J., Zhao, Q., Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies (2007) Proc Natl Acad Sci U S A, 104 (22), pp. 9511-9516
  • Luo, W., Sun, W., Taldone, T., Rodina, A., Chiosis, G., Heat shock protein 90 in neurodegenerative diseases (2010) Mol Neurodegener, 5, p. 24
  • Mayer, M.P., Gymnastics of molecular chaperones (2010) Mol Cell, 39 (3), pp. 321-331
  • Meierhofer, D., Wang, X., Huang, L., Kaiser, P., Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry (2008) J Proteome Res, 7 (10), pp. 4566-4576
  • Michie, K.A., Lowe, J., Dynamic filaments of the bacterial cytoskeleton (2006) Annu Rev Biochem, 75, pp. 467-492
  • Mogilner, A., Oster, G., Polymer motors: pushing out the front and pulling up the back (2003) Curr Biol, 13 (18), pp. R721-733
  • Morimoto, R.I., Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging (2008) Genes Dev, 22 (11), pp. 1427-1438
  • Muchowski, P.J., Wacker, J.L., Modulation of neurodegeneration by molecular chaperones (2005) Nat Rev Neurosci, 6 (1), pp. 11-22
  • Murphy, P.J., Morishima, Y., Kovacs, J.J., Yao, T.P., Pratt, W.B., Regulation of the dynamics of hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone (2005) J Biol Chem, 280 (40), pp. 33792-33799
  • Neckers, L., Hsp90 inhibitors as novel cancer chemotherapeutic agents (2002) Trends Mol Med, 8 (4 SUPPL), pp. S55-61
  • Omary, M.B., "IF-pathies": a broad spectrum of intermediate filament-associated diseases (2009) J Clin Invest, 119 (7), pp. 1756-1762
  • Pallari, H.M., Eriksson, J.E., Intermediate filaments as signaling platforms (2006) Sci STKE, 2006 (366), pp. pe53
  • Park, S.J., Suetsugu, S., Takenawa, T., Interaction of HSP90 to N-WASP leads to activation and protection from proteasome-dependent degradation (2005) EMBO J, 24 (8), pp. 1557-1570
  • Perrot-Applanat, M., Cibert, C., Geraud, G., Renoir, J.M., Baulieu, E.E., The 59 kDa FK506-binding protein, a 90 kDa heat shock protein binding immunophilin (FKBP59-HBI), is associated with the nucleus, the cytoskeleton and mitotic apparatus (1995) J Cell Sci, 108 (PART 5), pp. 2037-2051
  • Pratt, W.B., Galigniana, M.D., Harrell, J.M., DeFranco, D.B., Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement (2004) Cell Signal, 16 (8), pp. 857-872
  • Pratt, W.B., Galigniana, M.D., Morishima, Y., Murphy, P.J., Role of molecular chaperones in steroid receptor action (2004) Essays Biochem, 40, pp. 41-58
  • Pratt, W.B., Toft, D.O., Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery (2003) Exp Biol Med (Maywood), 228 (2), pp. 111-133
  • Pratt, W.B., Toft, D.O., Steroid receptor interactions with heat shock protein and immunophilin chaperones (1997) Endocr Rev, 18 (3), pp. 306-360
  • Quintá, H.R., Maschi, D., Gomez-Sanchez, C., Piwien Pilipuk, G., Galigniana, M.D., Subcellular rearrangement of hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth (2010) J Neurochem, 115, pp. 716-734
  • Reed, N.A., Cai, D., Blasius, T.L., Jih, G.T., Meyhofer, E., Gaertig, J., Microtubule acetylation promotes kinesin-1 binding and transport (2006) Curr Biol, 16 (21), pp. 2166-2172
  • Richter, K., Haslbeck, M., Buchner, J., The heat shock response: life on the verge of death (2010) Mol Cell, 40 (2), pp. 253-266
  • Roberson, E.D., Halabisky, B., Yoo, J.W., Yao, J., Chin, J., Yan, F., Amyloid-beta/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease (2011) J Neurosci, 31 (2), pp. 700-711
  • Rycyzyn, M.A., Reilly, S.C., O'Malley, K., Clevenger, C.V., Role of cyclophilin B in prolactin signal transduction and nuclear retrotranslocation (2000) Mol Endocrinol, 14 (8), pp. 1175-1186
  • Sah, N.K., Khan, Z., Khan, G.J., Bisen, P.S., Structural, functional and therapeutic biology of survivin (2006) Cancer Lett, 244 (2), pp. 164-171
  • Sahara, N., Maeda, S., Yoshiike, Y., Mizoroki, T., Yamashita, S., Murayama, M., Molecular chaperone-mediated tau protein metabolism counteracts the formation of granular tau oligomers in human brain (2007) J Neurosci Res, 85 (14), pp. 3098-3108
  • Sausville, E.A., Elsayed, Y., Monga, M., Kim, G., Signal transduction--directed cancer treatments (2003) Annu Rev Pharmacol Toxicol, 43, pp. 199-231
  • Sellin, M.E., Holmfeldt, P., Stenmark, S., Gullberg, M., Op18/Stathmin counteracts the activity of overexpressed tubulin-disrupting proteins in a human leukemia cell line (2008) Exp Cell Res, 314 (6), pp. 1367-1377
  • Shih, Y.L., Rothfield, L., The bacterial cytoskeleton (2006) Microbiol Mol Biol Rev, 70 (3), pp. 729-754
  • Shim, S., Yuan, J.P., Kim, J.Y., Zeng, W., Huang, G., Milshteyn, A., Peptidyl-prolyl isomerase FKBP52 controls chemotropic guidance of neuronal growth cones via regulation of TRPC1 channel opening (2009) Neuron, 64 (4), pp. 471-483
  • Shimamoto, S., Kubota, Y., Tokumitsu, H., Kobayashi, R., S100 proteins regulate the interaction of Hsp90 with Cyclophilin 40 and FKBP52 through their tetratricopeptide repeats (2010) FEBS Lett, 584 (6), pp. 1119-1125
  • Shimura, H., Miura-Shimura, Y., Kosik, K.S., Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival (2004) J Biol Chem, 279 (17), pp. 17957-17962
  • Silverstein, A.M., Galigniana, M.D., Chen, M.S., Owens-Grillo, J.K., Chinkers, M., Pratt, W.B., Protein phosphatase 5 is a major component of glucocorticoid receptor.hsp90 complexes with properties of an FK506-binding immunophilin (1997) J Biol Chem, 272 (26), pp. 16224-16230
  • Silverstein, A.M., Galigniana, M.D., Kanelakis, K.C., Radanyi, C., Renoir, J.M., Pratt, W.B., Different regions of the immunophilin FKBP52 determine its association with the glucocorticoid receptor, hsp90, and cytoplasmic dynein (1999) J Biol Chem, 274 (52), pp. 36980-36986
  • Simon-Sanchez, J., Schulte, C., Bras, J.M., Sharma, M., Gibbs, J.R., Berg, D., Genome-wide association study reveals genetic risk underlying Parkinson's disease (2009) Nat Genet, 41 (12), pp. 1308-1312
  • Sinars, C.R., Cheung-Flynn, J., Rimerman, R.A., Scammell, J.G., Smith, D.F., Clardy, J., Structure of the large FK506-binding protein FKBP51, an Hsp90-binding protein and a component of steroid receptor complexes (2003) Proc Natl Acad Sci U S A, 100 (3), pp. 868-873
  • Solit, D.B., Basso, A.D., Olshen, A.B., Scher, H.I., Rosen, N., Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol (2003) Cancer Res, 63 (9), pp. 2139-2144
  • Spiess, C., Meyer, A.S., Reissmann, S., Frydman, J., Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets (2004) Trends Cell Biol, 14 (11), pp. 598-604
  • Sreedhar, A.S., Kalmar, E., Csermely, P., Shen, Y.F., Hsp90 isoforms: functions, expression and clinical importance (2004) FEBS Lett, 562 (1-3), pp. 11-15
  • Szeverenyi, I., Cassidy, A.J., Chung, C.W., Lee, B.T., Common, J.E., Ogg, S.C., The Human Intermediate Filament Database: comprehensive information on a gene family involved in many human diseases (2008) Hum Mutat, 29 (3), pp. 351-360
  • Tagawa, H., Koide, M., Sato, H., Zile, M.R., Carabello, B.A., Cooper, G., Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading (1998) Circ Res, 82 (7), pp. 751-761
  • Tanioka, T., Nakatani, Y., Semmyo, N., Murakami, M., Kudo, I., Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis (2000) J Biol Chem, 275 (42), pp. 32775-32782
  • Thomas, M., Harrell, J.M., Morishima, Y., Peng, H.M., Pratt, W.B., Lieberman, A.P., Pharmacologic and genetic inhibition of hsp90-dependent trafficking reduces aggregation and promotes degradation of the expanded glutamine androgen receptor without stress protein induction (2006) Hum Mol Genet, 15 (11), pp. 1876-1883
  • Thulasiraman, V., Yang, C.F., Frydman, J., In vivo newly translated polypeptides are sequestered in a protected folding environment (1999) EMBO J, 18 (1), pp. 85-95
  • Toivola, D.M., Strnad, P., Habtezion, A., Omary, M.B., Intermediate filaments take the heat as stress proteins (2010) Trends Cell Biol, 20 (2), pp. 79-91
  • Toivola, D.M., Tao, G.Z., Habtezion, A., Liao, J., Omary, M.B., Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments (2005) Trends Cell Biol, 15 (11), pp. 608-617
  • Trepel, J., Mollapour, M., Giaccone, G., Neckers, L., Targeting the dynamic HSP90 complex in cancer (2010) Nat Rev Cancer, 10 (8), pp. 537-549
  • Verhey, K.J., Gaertig, J., The tubulin code (2007) Cell Cycle, 6 (17), pp. 2152-2160
  • Vogel, J., Drapkin, B., Oomen, J., Beach, D., Bloom, K., Snyder, M., Phosphorylation of gamma-tubulin regulates microtubule organization in budding yeast (2001) Dev Cell, 1 (5), pp. 621-631
  • Weaver, C.L., Espinoza, M., Kress, Y., Davies, P., Conformational change as one of the earliest alterations of tau in Alzheimer's disease (2000) Neurobiol Aging, 21 (5), pp. 719-727
  • Weis, F., Moullintraffort, L., Heichette, C., Chretien, D., Garnier, C., The 90-kDa heat shock protein Hsp90 protects tubulin against thermal denaturation (2010) J Biol Chem, 285 (13), pp. 9525-9534
  • Westermann, S., Weber, K., Post-translational modifications regulate microtubule function (2003) Nat Rev Mol Cell Biol, 4 (12), pp. 938-947
  • Wiesner, S., Helfer, E., Didry, D., Ducouret, G., Lafuma, F., Carlier, M.F., A biomimetic motility assay provides insight into the mechanism of actin-based motility (2003) J Cell Biol, 160 (3), pp. 387-398
  • Wirtz, D., Khatau, S.B., Protein filaments: Bundles from boundaries (2010) Nat Mater, 9 (10), pp. 788-790
  • Witte, H., Bradke, F., The role of the cytoskeleton during neuronal polarization (2008) Curr Opin Neurobiol, 18 (5), pp. 479-487
  • Witte, H., Neukirchen, D., Bradke, F., Microtubule stabilization specifies initial neuronal polarization (2008) J Cell Biol, 180 (3), pp. 619-632
  • Wright, N.T., Cannon, B.R., Zimmer, D.B., Weber, D.J., S100A1: Structure, Function, and Therapeutic Potential (2009) Curr Chem Biol, 3 (2), pp. 138-145
  • Wu, B., Li, P., Liu, Y., Lou, Z., Ding, Y., Shu, C., 3D structure of human FK506-binding protein 52: implications for the assembly of the glucocorticoid receptor/Hsp90 /immunophilin heterocomplex (2004) Proc Natl Acad Sci U S A, 101 (22), pp. 8348-8353
  • Yamada, H.Y., Rao, C.V., Genes that modulate the sensitivity for anti-microtubule drug-mediated chemotherapy (2010) Curr Cancer Drug Targets, 10 (6), pp. 623-633
  • Yoshimura, T., Kawano, Y., Arimura, N., Kawabata, S., Kikuchi, A., Kaibuchi, K., GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity (2005) Cell, 120 (1), pp. 137-149
  • Zhai, Y., Kronebusch, P.J., Simon, P.M., Borisy, G.G., Microtubule dynamics at the G2/M transition: abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis (1996) J Cell Biol, 135 (1), pp. 201-214
  • Zhao, W., Zhong, L., Wu, J., Chen, L., Qing, K., Weigel-Kelley, K.A., Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors (2006) Virology, 353 (2), pp. 283-293
  • Zilberman, Y., Ballestrem, C., Carramusa, L., Mazitschek, R., Khochbin, S., Bershadsky, A., Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6 (2009) J Cell Sci, 122 (PART 19), pp. 3531-3541

Citas:

---------- APA ----------
Quintá, H.R., Galigniana, N.M., Daneri-Becerra, C., Lagadari, M. & Galigniana, M.D. (2012) . Microtubule organization. The housekeeping role of heat-shock proteins and immunophilins. Tubulin: Structure, Functions and Roles in Disease, 41-68.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816210_v_n_p41_Quinta [ ]
---------- CHICAGO ----------
Quintá, H.R., Galigniana, N.M., Daneri-Becerra, C., Lagadari, M., Galigniana, M.D. "Microtubule organization. The housekeeping role of heat-shock proteins and immunophilins" . Tubulin: Structure, Functions and Roles in Disease (2012) : 41-68.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816210_v_n_p41_Quinta [ ]
---------- MLA ----------
Quintá, H.R., Galigniana, N.M., Daneri-Becerra, C., Lagadari, M., Galigniana, M.D. "Microtubule organization. The housekeeping role of heat-shock proteins and immunophilins" . Tubulin: Structure, Functions and Roles in Disease, 2012, pp. 41-68.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816210_v_n_p41_Quinta [ ]
---------- VANCOUVER ----------
Quintá, H.R., Galigniana, N.M., Daneri-Becerra, C., Lagadari, M., Galigniana, M.D. Microtubule organization. The housekeeping role of heat-shock proteins and immunophilins. Tubulin: Struct., Funct. and Roles in Dis. 2012:41-68.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816210_v_n_p41_Quinta [ ]