Parte de libro

Estamos trabajando para incorporar este artículo al repositorio

Abstract:

Solanum tuberosum L. potato plants undergo several development stages during their life cycle involving stolon formation, tuberization, tuber filling, dormancy and tuber sprouting. Potato tubers are underground sinks originated from stolons in a process that requires the cessation of apex growth, the swelling of the stolon by subapical radial growth, and enlargement of the body. Potato plants produce tubers as a result of the changing balance of endogenous growth regulators, which is brought about by the plant's ability to perceive changes in the environment. An important aspect of tuber induction is that the stimulus is received on the leaves and is graft-transmissible. Environmental and hormonal signals, such as those mediated by light and gibberellins, are integrated in the leaves and a mobile signal is exported to the underground stolons to initiate tuber formation. This process is accompanied by the accumulation of starch and storage proteins. Tuberization allows the plant to reproduce in a vegetative way and determines that it can be considered a potential perennial plant. With the onset of sprouting, the tuber turns into a source organ; the reducing sugars increase as starch is hydrolyzed, providing carbon and energy for growth of the developing sprout. Tuber development and sprouting require coordinated transcriptional and metabolic changes as well as major changes in gene expression patterns. Signalling cascades are involved in sensing and transducing the environmental and hormonal stimuli that modulate both developmental processes. In this chapter we will review the different external and endogenous factors that regulate both processes and the signal transduction cascades associated to them. © 2012 Nova Science Publishers, Inc. All rights reserved.

Registro:

Documento: Parte de libro
Título:Signal transduction mechanisms involved in potato developmental processes
Autor:Ulloa, R.M.; Capiati, D.A.; Giammaria, V.
Filiación:Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, INGEBI, CONICET, Universidad de Buenos Aires, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
Año:2012
Página de inicio:125
Página de fin:146
Título revista:Potatoes: Production, Consumption and Health Benefits
Título revista abreviado:Potatoes: Prod., Consum. and Health Benefits
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816210_v_n_p125_Ulloa

Referencias:

  • Cutter, E.G., Structure and development of the potato plant (1978) The potato crop, pp. 70-152. , Harris, PM editor (Eds.), New York: Halsted Press, John Wiley and Sons
  • Prat, S., Frommer, W.B., Hofgen, R., Keil, M., Kossmann, J., Koster-topfer, M., Liu, X.J., Willmitzer, L., Gene expression during tuber development (1990) FEBS Letters, 268, pp. 334-338
  • Visser, R.G.F., Vreugdenhil, D., Hendriks, T., Jacobsen, E.J., Gene expression and carbohydrate content during stolon to tuber transition (1994) Physiologia Plantarum, 90, pp. 285-292
  • Sonnewald, U., Control of potato tuber sprouting (2001) Trends in Plant Science, 6, pp. 333-335
  • Jackson, S.D., Multiple signaling pathways controls tuber induction in potato (1999) Plant Physiology, 119, pp. 1-8
  • Sarkar, D., The signal transduction pathways controlling in planta tuberization in potato: an emerging synthesis (2008) Plant Cell Reports, 27, pp. 1-8
  • Jackson, S.D., Plant responses to photoperiod (2009) New Phytologist, 181, pp. 517-531
  • Batutis, E.J., Ewing, E., Red light effect on potato (Solanum tuberosum L.) tuberization (1982) Plant Physiology, 69, pp. 672-674
  • Jackson, S., Heyer, A., Dietze, J., Prat, S., Phytochrome B mediates photoperiodic control of potato tuber formation (1996) Plant Journal, 9, pp. 159-166
  • Yanovsky, M.J., Izaguirre, M., Wagmaister, J.A., Gatz, C., Jackson, S.D., Thomas, B., Casal, J.J., Phytochrome A resets the circadian in potato (2000) Plant Journal, 23, pp. 223-232
  • Krauss, A., Interaction of nitrogen nutrition, phytohormones and tuberization (1985) Potato Physiology, pp. 209-231. , In: Li, PH editor, London: Academic Press
  • Saluzzo, A., Echeverría, H., Andrade, F.H., Huarte, M., Nitrogen nutrition of potato cultivars differing in maturity (1999) Journal of Agronomy and Crop Science, 183, pp. 157-165
  • Snyder, F., Ewing, E.E., Interactive effects of temperature, photoperiod and cultivar on tuberization (1989) Horticultural Science, 24, pp. 336-338
  • Vreugdenhil, D., Sergeeva, L.I., Gibberellins and tuberization in potato (1999) Potato Research, 42, pp. 471-481
  • Woolley, D.J., Wareing, P.F., Environmental effects on cytokinins and GA levels in potato (1972) New Phytologist, 71, pp. 1015-1025
  • Menzel, C.M., Tuberization at high temperatures: gibberellin content (1983) Annals of Botany, 52, pp. 697-702
  • Carrera, E., Bou, J., Garcia-martinez, J.L., Prat, S., Transgenic GA 20-oxidase potato plants (2000) Plant Journal, 22, pp. 247-256
  • Rosin, F.M., Hart, J.K., Horner, H.T., Davies, P.J., Hannapel, D.J., Overexpression of a knotted-like homeobox gene of potato alters vegetative development by decreasing gibberellin accumulation (2003) Plant Physiology, 132, pp. 106-117
  • Simko, I., Effect of paclobutrazol on in vitro formation of potato micro tubers and their sprouting after storage (1994) Biologia Plantarum, 36, pp. 15-20
  • Xu, X., van Lammeren, A.A., Vermeer, E., Vreugdenhil, D., Gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation (1998) Plant Physiology, 117, pp. 575-584
  • Ross, J.J., Reid, J.B., Swain, S.M., Hasan, O., Poole, A.T., Hedden, P., Willis, C.L., Genetic regulation of gibberellin deactivation in Pisum (1995) Plant Journal, 7, pp. 513-523
  • Kloosterman, B., Navarro, C., Bijsterbosch, G., Lange, T., Prat, S., Visser, R.G., Bachem, C.W., StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development (2007) Plant Journal, 52, pp. 362-373
  • Martinez-garcia, J.F., Virgos-soler, A., Prat, S., Control of photoperiod-regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS (2002) Proceedings of the National Academy of Sciences of the United States of America, 99, pp. 15211-15216
  • Jackson, S.D., James, P.E., Carrera, E., Prat, S., Thomas, B., Regulation of transcript levels of a potato Gibberellin 20-oxidase gene by light and phytochrome B (2000) Plant Physiology, 124, pp. 423-430
  • Van den Berg, J.H., Simko, I., Davies, P.J., Ewing, E.E., Halinska, A., Morphology and GA metabolism in wild-type and dwarf Solanum tuberosum ssp. andigena (1995) Journal of Plant Physiology, 146, pp. 467-473
  • Amador, V., Monte, E., Garcia-martinez, J.L., Prat, S., PHOR1 function in GA signaling (2001) Cell, 106, pp. 343-354
  • Fernie, A.R., Willmitzer, L., Molecular and biochemical triggers of potato tuber development (2001) Plant Physiology, 127, pp. 1459-1465
  • Machackova, I., Konstantinova, T.N., Seergeva, L.I., Lozhnikova, V.N., Golyanovskaya, S.A., Dudko, N.D., Eder, J., Aksenova, N.P., Photoperiodic control and phytohormone balance in Solanum tuberosum (1998) Physiologia Plantarum, 102, pp. 272-278
  • Quarrie, S.A., Droopy: a wilty mutant of potato deficient in abscisic acid (1982) Plant Cell and Environment, 5, pp. 23-26
  • Koda, Y., Okazawa, Y., A potato tuber-inducing activity (1998) Plant and Cell Physiology, 29, pp. 969-974
  • Helder, H., Miersch, O., Vreugdenhil, D., Sembdner, G., JA in leaflets of Solanum demissum plants (1993) Physiologia Plantarum, 88, pp. 647-653
  • Koda, Y., Jasmonates in various morphogenetic events (1997) Physiologia Plantarum, 100, pp. 639-646
  • Jackson, S., Willmitzer, L., JA does not induce tuberization in SD-potato species in non-inducing conditions (1994) Planta, 194, pp. 155-159
  • Ulloa, R.M., Raíces, M., Macintosh, G.C., Maldonado, S., Téllez-Iñón, M.T., JA effects on potato plants (2002) Physiologia Plantarum, 115, pp. 417-427
  • Martín, M., León, J., Dammann, C., Albar, J.P., Griffiths, G., Sánchez-serrano, J.J., Depletion of potato leaf ω3 fatty acid desaturase (1999) European Journal of Biochemistry, 262, pp. 283-290
  • Kolomiets, M.V., Hannapel, D.J., Chen, H., Tymeson, M., Gladon, R.J., Lipoxygenase function in potato tuber development (2001) Plant Cell, 13, pp. 613-626
  • Jang, J.-C., Sheen, J., Sugar sensing in higher plants (1994) Plant Cell, 6, pp. 1665-1679
  • Jang, J.-C., Leon, P., Zhou, L., Sheen, J., Hexokinase as a sugar sensor in higher plants (1997) Plant Cell, 9, pp. 5-19
  • Rolland, F., Moore, B., Sheen, J., Sugar Sensing and Signaling in Plants (2002) Plant Cell, 14, pp. 185-205
  • Lê, C.L., Facteurs influençant la tubérisation in vitro de pommes de terre (Solanum tuberosum L. var. Agria) (1990) Revue Suisse Agriulture, 22, pp. 115-116
  • Garner, N., Blake, J., Induction and Development of Potato microtubers (1989) Annals of Botany, 63, pp. 663-674
  • Raíces, M., Macintosh, G.C., Ulloa, R.M., Gargantini, P.R., Vozza, N.F., Téllez-Iñón, M.T., Sucrose increases CDPK and phosphatase activities in potato plants (2003) Cellular and Molecular Biology, 49, pp. 956-964
  • Oparka, K.J., Wright, K.M., Osmotic regulation of starch synthesis in potato tubers? (1988) Planta, 174, pp. 123-126
  • Marmiroli, N., Macharay, G.C., Oparka, K.J., Tuberisation in potato involves a swich from apoplastic. to symplastic phloem unloading (2001) Plant Cell, 13, pp. 385-398
  • Müller-Röber, B.T., Kossmann, J., Hannah, L.C., Willmitzer, L., Sonnewald, U., A potato ADP-glucose pyrophosphorylase responds to sucrose (1990) Molecular and General Genetics, 224, pp. 136-146
  • Salanoubat, M., Belliard, G., Potato sucrose synthase mRNA depends on wounding, anaerobiosis and sucrose concentration (1989) Gene, 84, pp. 181-185
  • Hendriks, T., Vreugdenhil, D., Stiekema, W.J., Patatin and proteinase inhibitor during potato tuber development (1991) Plant Molecular Biology, 17, pp. 385-394
  • Mitsumori, C., Yamagishi, K., Fugino, K., Kikuta, Y., Kunitz and Bowmann-Birk proteinase inhibitors expressed during potato tuber development (1994) Plant Molecular Biology, 26, pp. 961-969
  • Weeda, S.M., Mohan Kumar, G.N., Richard Knowles, N., Developmentally linked changes in proteases and protease inhibitors suggest a role for potato multicystatin in regulating protein content of potato tubers (2009) Planta., 230, pp. 73-84
  • Appeldoorn, N.J., Sergeeva, L., Vreugdenhil, D., Van Der Plas, L.H., Visser, R.G., Sucrose to hexose-phosphate conversion during stolon-to-tuber transition (2002) Physiologia Plantarum, 115, pp. 303-310
  • Ross, H.A., Davies, H.V., Burch, L.R., Viola, R., Mcrae, D., Changes in carbohydrate contents and sucrose degrading enzymes in tuberizing stolons (1994) Physiologia Plantarum, 90, pp. 748-756
  • Zrenner, R., Salanabout, M., Willmitzer, L., Sonnewald, U., Role of sucrose synthase for sink strength using transgenic potato plants (1995) Plant Journal, 7, pp. 97-107
  • Müller-Röber, B., Sonnewald, U., Willmitzer, L., Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes (1992) EMBO Journal, 11, pp. 1229-1238
  • Bachem, C.W.B., Vanderhoeven, R.S., Debruijn, S.M., Vreugdenhil, D., Zabeau, M., Visser, R.G.F., RNA fingerprinting based on AFLP (1996) Plant Journal, 9, pp. 745-747
  • Bachem, C.W., Oomen, R.J.F., Kuyt, S., Horvath, B.M., Claassens, M.M., Vreugdenhil, D., Visser, R.G., Suppression of a potato alpha-SNAP homologue (2000) Plant Molecular Biology, 43, pp. 473-482
  • Bachem, C.W., Horvath, B., Trindade, L., Claassens, M., Davelaar, E., Jordi, W., Visser, R.G., Steroid dehydrogenases affects gibberellin levels (2001) Plant Journal, 25, pp. 595-604
  • Suárez-López, P., Long-range signalling in plant reproductive development (2005) International Journal of Developmental Biology, 49, pp. 761-771
  • Chatterjee, M., Banerjee, A.K., Hannapel, D.J., A BELL1-like gene of potato is light activated and wound inducible (2007) Plant Physiology, 145, pp. 1435-1443
  • Banerjee, A.K., Chatterjee, M., Yu, Y., Suh, S.G., Miller, W.A., Hannapel, D.J., Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway (2006) Plant Cell, 18, pp. 3443-3457
  • Banerjee, A.K., Lin, T., Hannapel, D.J., Untranslated regions of a mobile transcript mediate RNA metabolism (2009) Plant Physiology, 151, pp. 1831-1843
  • Hannapel, D.J., A model system of development regulated by the long-distance transport of mRNA (2010) Journal of Integrative Plant Biology, 52, pp. 40-52
  • Martin, A., Adam, H., Díaz-mendoza, M., Zurczak, M., González-schain, N.D., Suárez-López, P., Graft-transmissible induction of potato tuberization by the microRNA miR172 (2009) Development, 136, pp. 2873-2881
  • Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Coupland, G., FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis (2007) Science, 316, pp. 1030-1033
  • Notaguchi, M., Abe, M., Kimura, T., Daimon, Y., Kobayashi, T., Yamaguchi, A., Tomita, Y., Araki, T., Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering (2008) Plant Cell Physiology, 49, pp. 1645-1658
  • Ishikawa, R., Aoki, M., Kurotani, K.I., Yokoi, S., Shinomura, T., Takano, M., Shimamoto, K., Phytochrome dependent quantitative control of Hd3a transcription is the basis of the night break effect in rice flowering (2011) Molecular Genetics and Genomics, , DOI: 10.1007/s00438-011-0621-4
  • Abelenda, J.A., Navarro, C., Prat, S., From the model to the crop: genes controlling tuber formation in potato (2011) Current Opinion in Biotechnology, 22, pp. 287-292
  • Hannapel, D.J., Differential expression of potato tuber protein genes (1990) Plant Physiology, 94, pp. 919-925
  • Fischer, L., Lipavska, H., Hausman, J.F., Opatrny, Z., Morphological and molecular characterization of a spontaneously tuberizing potato mutant: an insight into the regulatory mechanisms of tuber induction (2008) BMC Plant Biology, 8, p. 117
  • Hannapel, D.J., Miller, J.C., Park, W.D., Regulation of potato tuber protein accumulation by gibberellic acid (1985) Plant Physiology, 78, pp. 700-703
  • País, S.M., Muñiz García, M.N., Téllez-Iñón, M.T., Capiati, D.A., Protein phosphatases type 2A mediate tuberization signaling in Solanum tuberosum L. leaves (2010) Planta, 232, pp. 37-49
  • Bush, D.S., Calcium signaling and regulation in plant cells (1995) Annual Review of Plant Physiology and Plant Molecular Biology, 46, pp. 95-122
  • Evans, N.H., Mcainsh, M.R., Hetherington, A.M., Calcium oscillations in higher plants (2001) Current Opinion in Plant Biology, 4, pp. 415-420
  • Sopory, S.K., Munshi, M., Protein kinases and phosphatases in cellular signaling in plants (1998) Critical Reviews in Plant Sciences, 17, pp. 245-318
  • Balamani, V., Veluthambi, K., Poovaiah, B.W., Calcium in potato tuberization (1986) Plant Physiology, 80, pp. 856-858
  • Takezawa, D., Liu, Z.H., An, G., Poovaiah, B.W., Calmodulin gene family in potato (1995) Plant Molecular Biology, 27, pp. 693-703
  • Poovaiah, B.W., Takezawa, D., An, G., Han, T.-J., A calmodulin isoform alters growth and development in potato (1996) Journal of Plant Physiology, 149, pp. 553-558
  • Roberts, D.M., Harmon, A.C., Calcium-modulated proteins (1992) Annual Review of Plant Physiology and Plant Molecular Biology, 43, pp. 375-414
  • Harmon, A.C., Putnam-evans, C., Cormier, M.J., A calcium-dependent but calmodulin-independent protein kinase from soybean (1987) Plant Physiology, 83, pp. 830-837
  • Harper, J.F., Sussman, M.R., Schaller, G.E., Putnam-evans, C., Charbonneau, H., Harmon, A.C., A CDPK with a calmodulin like regulatory domain (1991) Science, 252, pp. 951-954
  • Cheng, S.-H., Willmann, M.R., Chen, H.-C., Sheen, J., Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family (2002) Plant Physiology, 129, pp. 469-485
  • Hrabak, E.M., Chan, C.W., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N., Kudla, J., Harmon, A.C., The Arabidopsis CDPK-SnRK superfamily of protein kinases (2003) Plant Physiology, 132, pp. 666-680
  • Ray, S., Agarwal, P., Arora, R., Kapoor, S., Tyagi, A.K., Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica) (2007) Molecular Genetics and Genomics, 278, pp. 493-505
  • Li, A.L., Zhu, Y.F., Tan, X.M., Wang, X., Wei, B., Guo, H.Z., Zhang, Z.L., Mao, L., Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.) (2008) Plant Molecular Biology, 66, pp. 429-443
  • Raíces, M., Chico, J.M., Téllez-Iñón, M.T., Ulloa, R.M., Molecular characterization of StCDPK1 (2001) Plant Molecular Biology, 46, pp. 591-601
  • Gargantini, P.R., Giammaria, V., Grandellis, C., Feingold, S.E., Maldonado, S., Ulloa, R.M., Genomic and functional characterization of StCDPK1 (2009) Plant Molecular Biology, 70, pp. 153-172
  • Giammaria, V., Grandellis, C., Bachmann, S., Gargantini, P.R., Feingold, S.E., Bryan, G., Ulloa, R.M., StCDPK2 expression and activity reveal a highly responsive potato calcium-dependent protein kinase involved in light signalling (2011) Planta, 233, pp. 593-609
  • Kobayashi, M., Ohura, I., Kawakita, K., Yokota, N., Fujiwara, M., Shimamoto, K., Doke, N., Yoshioka, H., Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase (2007) Plant Cell, 19, pp. 1065-1080
  • Lakatos, L., Hutvágner, G., Bánfalvi, Z., Potato protein kinase StCPK1: a putative evolutionary link between CDPKs and CRKs (1998) Biochimica et Biophysica Acta, 1442, pp. 101-108
  • Lu, S.X., Hrabak, E.M., An Arabidopsis CDPK associated with the endoplasmic reticulum (2002) Plant Physiology, 128, pp. 1008-1021
  • Harper, J.F., Breton, G., Harmon, A., Decoding Ca(2+) signals through plant protein kinases (2004) Annual Review of Plant Biology, 55, pp. 263-288
  • Sheen, J., Ca2+-dependent protein kinases and stress signal transduction in plants (1996) Science, 274, pp. 1900-1902
  • Botella, J.R., Arteca, J.M., Somodevilla, M., Arteca, R.N., CDPK expression in mungbean (Vigna radiata) (1996) Plant Molecular Biology, 30, pp. 1129-1137
  • Pestenacz, A., Erdei, L., Maize and sorghum CDPK induced by polyethylene glycol (1996) Physiologia Plantarum, 97, pp. 360-364
  • Yoon, G.M., Cho, H.S., Ha, H.J., Liu, J.R., Lee, H.P., Characterization of NtCDPK1 (2002) Plant Molecular Biology, 39, pp. 991-1001
  • Klimecka, M., Muszynska, G., Structure and functions of plant calcium-dependent protein kinases (2007) Acta Biochimica Polonica, 54, pp. 219-233
  • Macintosh, G.C., Ulloa, R.M., Raíces, M., Téllez-Iñón, M.T., Calcium-dependent protein kinase and tuberization process in potato (1996) Plant Physiology, 112, pp. 1541-1550
  • Ulloa, R.M., Macintosh, G.C., Melchiorre, M., Mentaberry, A.N., Dallari, P., Moriconi, D.N., Téllez-Iñón, M.T., Protein kinase activity in potato microtuberization (1997) Plant Cell Reports, 16, pp. 426-429
  • Raíces, M., Gargantini, P.R., Chinchilla, D., Crespi, M., Téllez-Iñón, M.T., Ulloa, R.M., Regulation of CDPK isoforms during tuber development (2003) Plant Molecular Biology, 52, pp. 1011-1024
  • Raíces, M., Ulloa, R.M., Macintosh, G., Crespi, M.D., Téllez-Iñón, M.T., StCDPK1 is expressed in stolon tips and is induced by high sucrose (2003) Journal of Experimental Botany, 54, pp. 2589-2591
  • Viola, R., Roberts, A.G., Haupt, S., Gazzani, S., Hancock, R.D., Marmiroli, N., Machray, G.C., Oparka, K.J., Simplastic phloem unloading in potato (2001) The Plant Cell, 13, pp. 385-398
  • Reust, W., EAPR working group physiological age of the potato (1986) Potato Research, 29, pp. 268-271
  • Coleman, W.K., Dormancy release in potato tubers: a review (1987) Potato Research, 14, pp. 96-101
  • Burton, W.G., Post-harvest physiology (1989) The potato, 4, pp. 23-522. , Burton WG, editor, Harlow: Longman Scientific and Technical
  • Suttle, J.C., Hultstrand, J.F., Role of endogenous abscisic acid in potato microtuber dormancy (1994) Plant Physiology, 105, pp. 891-896
  • Destefano-beltran, L., Knauber, D., Huckle, L., Suttle, J.C., Effects of postharvest storage and dormancy status on ABA content, metabolism, and expression of genes involved in ABA biosynthesis and metabolism in potato tuber tissues (2006) Plant Molecular Biology, 61, pp. 687-697
  • Suttle, J.C., Involvement of ethylene in potato microtuber dormancy (1998) Plant Physiology, 118, pp. 843-848
  • Bajji, M., M'Hamdi, M., Gastiny, F., Rojas-beltran, J.A., du Jardin, P., Catalase inhibition accelerates dormancy release and sprouting in potato (Solanum tuberosum L.) tubers (2007) Biotechnologie, Agronomie, 11, pp. 121-131. , Société et Environnement
  • Suttle, J.C., Dormancy-relatedchangesincytokininefficacy and metabolism in potato tubers during postharvest storage (2001) Plant Growth Regulation, 35, pp. 199-206
  • Madec, P., Perennec, P., Levée de dormance de tubercules de pomme de terre d'âge différent: action de la rindite, de la gibberelline et de l'oeilletonnage (1969) European Potato Jornal, 12, pp. 196-115
  • Alexopoulos, A.A., Akoumianakis, K.A., Olympios, C.M., Passam, H.C., The effect of the time and mode of application of gibberellic acid and inhibitors of gibberellin biosynthesis on the dormancy of potato tubers grown from true potato seed (2007) Journal of the Science of Food and Agriculture, 87, pp. 1973-1979
  • Suttle, J.C., Involvement of endogenous gibberellins in potato tuber dormancy and early sprout growth: a critical assessment (2004) Journal of Plant Physiology, 161, pp. 157-164
  • Hartmann, A., Senning, M., Hedden, P., Sonnewald, U., Sonnewald, S., Reactivation of meristem activity and sprout growth in potato tubers require both cytokinin and gibberellins (2011) Plant Physiology, 155, pp. 776-796
  • Sorce, C., Lombardi, L., Giorgetti, L., Parisi, B., Ranalli, P., Lorenzi, R., Indole acetic acid concentration and metabolism changes during bud development in tubers of two potato (Solanum tuberosum) cultivars (2009) Journal of Plant Physiology, 166, pp. 1023-1033
  • Viola, R., Pelloux, J., van der Ploeg, A., Gillespie, T., Marquis, N., Roberts, A.G., Hancock, R.D., Symplastic connection is required for bud outgrowth following dormancy in potato (Solanum tuberosum L.) tubers (2007) Plant Cell and Environment, 30, pp. 973-983
  • Ronning, C.M., Stegalkina, S.S., Ascenzi, R.A., Bougri, O., Hart, A.L., Utterbach, T.R., Vanaken, S.E., Cho, J., Comparative analyses of potato expressed sequence tag libraries (2003) Plant Physiology, 131, pp. 419-429
  • Campbell, M., Segear, E., Beers, L., Knauber, D., Suttle, J., Dormancy in potato tuber meristems: chemically induced cessation in dormancy matches the natural process based on transcript profiles (2008) Functional and Integrative Genomics, 8, pp. 317-328
  • Somyong, S., Munkvold, J.D., Tanaka, J., Benscher, D., Sorrells, M.E., Comparative genetic analysis of a wheat seed dormancy QTL with rice and Brachypodium identifies candidate genes for ABA perception and calcium signaling (2011) Functional and Integrative Genomics, , DOI: 10.1007/s10142-011-0219-2
  • Pang, X., Halaly, T., Crane, O., Keilin, T., Keren-keiserman, A., Ogrodovitch, A., Galbraith, D., Or, E., Involvement of calcium signalling in dormancy release of grape buds (2007) Journal of Experimental Botany, 58, pp. 3249-3262

Citas:

---------- APA ----------
Ulloa, R.M., Capiati, D.A. & Giammaria, V. (2012) . Signal transduction mechanisms involved in potato developmental processes. Potatoes: Production, Consumption and Health Benefits, 125-146.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816210_v_n_p125_Ulloa [ ]
---------- CHICAGO ----------
Ulloa, R.M., Capiati, D.A., Giammaria, V. "Signal transduction mechanisms involved in potato developmental processes" . Potatoes: Production, Consumption and Health Benefits (2012) : 125-146.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816210_v_n_p125_Ulloa [ ]
---------- MLA ----------
Ulloa, R.M., Capiati, D.A., Giammaria, V. "Signal transduction mechanisms involved in potato developmental processes" . Potatoes: Production, Consumption and Health Benefits, 2012, pp. 125-146.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816210_v_n_p125_Ulloa [ ]
---------- VANCOUVER ----------
Ulloa, R.M., Capiati, D.A., Giammaria, V. Signal transduction mechanisms involved in potato developmental processes. Potatoes: Prod., Consum. and Health Benefits. 2012:125-146.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816210_v_n_p125_Ulloa [ ]