Parte de libro

Estamos trabajando para incorporar este artículo al repositorio

Abstract:

As sessile organisms plants have to cope with changing environmental conditions. Drought and salinity, which causes water-deficit in plant cells, are common adverse factors that limit plant growth and productivity. Understanding the mechanisms by which plants perceive environmental signals and transmit them to cellular machinery to activate adaptive responses is of great importance to biology and to rational engineering of crop plants. This chapter reviews the signal transduction mechanisms that activate water-deficit stress responses and the regulation of transcription factors that control the expression of stress-responsive genes. The general components of stress signal transduction pathway for drought and salt stress are considered. Signal perception, receptor-coupled phosphorelay, phosphoinositol-induced Ca2+ changes, Ca2+-coupled phosphoprotein cascades, mitogen-activated protein kinase cascade and transcriptional activation of stress responsive genes are the main signal transduction steps addressed. Abscisic acid (ABA) plays a pivotal role in stress responses in plants. Therefore, the hormone implications are also reviewed. The transcription factors responsible for reprogramming gene expression in response to stress are described. Finally, the physiological and biochemical responses that lead to plant tolerance to water-deficit stress are addressed. © 2012 by Nova Science Publishers, Inc. All rights reserved.

Registro:

Documento: Parte de libro
Título:Water-deficit stress signal transduction pathways in plants: From sensing to response
Autor:Capiati, D.A.; García, M.N.M.; Ulloa, R.M.
Filiación:Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Año:2012
Página de inicio:99
Página de fin:132
Título revista:Abiotic Stress: New Research
Título revista abreviado:Abiotic Stress: New Res.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816194_v_n_p99_Capiati

Referencias:

  • Chinnusamy, V., Schumaker, K., Zhu, J.K., Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants (2004) Journal of Experimental Botany, 55, pp. 225-236
  • Mahajan, S., Tuteja, N., Cold, salinity and drought stresses: an overview (2005) Archives of Biochemistry and Biophysics, 444, pp. 139-158
  • Xu, Z., Zhou, G., Shimizu, H., Plant responses to drought and rewatering (2010) Plant Signaling and Behavior, 5, pp. 649-654
  • Hirayama, T., Shinozaki, K., Research on plant abiotic stress responses in the post-genome era: past, present and future (2010) The Plant Journal, 61, pp. 1041-1052
  • Xiong, L., Schumaker, K.S., Zhu, J.K., Cell signaling during cold, drought, and salt stress (2002) The Plant Cell, 14, pp. S165-183
  • Suzuki, I., Dmitry, A.L., Kanesaki, Y., Mikami, K., Murata, N., The pathway for perception and transduction of low-temperature signals in Synechocystis (2000) The EMBO Journal, 19, pp. 1327-1334
  • Aguilar, P.S., Hernandez-Arriaga, A.M., Cybulski, L.E., Erazo, A.C., De Mendoza, D., Molecular basis of thermosensing: a two component signal transduction thermometer in Bacillus subtilis (2001) The EMBO Journal, 20, pp. 1681-1691
  • Maeda, T., Wurgler-Murphy, S.M., Saito, H., A two-component system that regulates an osmosensing MAP kinase cascade in yeast (1994) Nature, 369, pp. 242-245
  • Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hirayama, T., Shinozaki, K., A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor (1999) The Plant Cell, 11, pp. 1743-1754
  • Tamura, T., Hara, K., Yamaguchi, Y., Koizumi, N., Sano, H., Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants (2003) Plant Physiology, 131, pp. 454-462
  • Nakamura, K., Sano, H., A plasma-membrane linker for the phosphoinositide-specific phospholipase C in tobacco plants (2009) Plant Signaling and Behavior, 4, pp. 26-29
  • Meijer, H.J., Munnik, T., Phospholipid-based signaling in plants (2003) Annual Review of Plant Biology, 54, pp. 265-306
  • Knight, H., Calcium signaling during abiotic stress in plants (2000) International Review of Cytology, 195, pp. 269-325
  • Sanders, D., Brownlee, C., Harper, J.F., Communicating with calcium (1999) The Plant Cell, 11, pp. 691-706
  • Schroeder, J.I., Allen, G.J., Hugouvieux, V., Kwak, J.M., Waner, D., Guard cell signal transduction (2001) Annual Review of Plant Physiology and Plant Molecular Biology, 52, pp. 627-658
  • Pical, C., Westergren, T., Dove, S.K., Larsson, C., Sommarin, M., Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells (1999) Journal of Biological Chemistry, 274, pp. 38232-38240
  • DeWald, D.B., Torabinejad, J., Jones, C.A., Shope, J.C., Cangelosi, A.R., Thompson, J.E., Prestwich, G.D., Hama, H., Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis (2001) Plant Physiology, 126, pp. 759-769
  • Mikami, K., Katagiri, T., Luchi, S., Yamaguchi-Shinozaki, K., Shinozaki, K., A gene encoding phosphatidylinositol 4-phosphate 5-kinase is induced by water stress and abscisic acid in Arabidopsis thaliana (1998) The Plant Journal, 15, pp. 563-568
  • Hirayama, T., Ohto, C., Mizoguchi, T., Shinozaki, K., A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana (1995) Proceedings of the National Academy of Sciences of the United States of America, 92, pp. 3903-3907
  • Kopka, J., Pical, C., Gray, J.E., Muller-Rober, B., Molecular and enzymatic characterization of three phosphoinositide-specific phospholipase C isoforms from potato (1998) Plant Physiology, 116, pp. 239-250
  • Xiong, L., Lee, B.H., Ishitani, M., Lee, H., Zhang, C., Zhu, J.K., FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis (2001) Genes and Development, 15, pp. 1971-1984
  • Perera, I.Y., Hung, C.Y., Moore, C.D., Stevenson-Paulik, J., Boss, W.F., Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling (2008) The Plant Cell, 20, pp. 2876-2893
  • Wang, X., The role of phospholipase D in signaling cascades (1999) Plant Physiology, 120, pp. 645-651
  • Jacob, T., Ritchie, S., Assmann, S.M., Gilroy, S., Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity (1999) Proceedings of the National Academy of Sciences of the United States of America, 9, pp. 12192-12197
  • Frank, W., Munnik, T., Kerkmann, K., Salamini, F., Bartels, D., Water-deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum (2000) The Plant Cell, 12, pp. 111-123
  • Munnik, T., Meijer, H.J.G., Ter Riet, B., Frank, W., Bartels, D., Musgrave, A., Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate (2000) The Plant Journal, 22, pp. 147-154
  • Katagiri, T., Takahashi, S., Shinozaki, K., Involvement of a novel Arabidopsis phospholipase D, AtPLDdelta, in dehydration inducible accumulation of phosphatidic acid in stress signaling (2001) The Plant Journal, 26, pp. 595-605
  • Hong, Y., Zhang, W., Wang, X., Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity (2010) Plant Cell and Environment, 33, pp. 627-635
  • Yu, L., Nie, J., Cao, C., Jin, Y., Yan, M., Wang, F., Liu, J., Zhang, W., Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana (2010) New Phytologist, 188, pp. 762-773
  • Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J., Plant cellular and molecular responses to high salinity (2000) Annual Review of Plant Physiology and Plant Molecular Biology, 51, pp. 463-499
  • Kocsy, G., Galiba, G., Brunold, C., Role of glutathione in adaptation and signaling during chilling and cold acclimation in plants (2001) Physiologia Plantarum, 113, pp. 158-164
  • Kovtun, Y., Chiu, W.L., Tena, G., Sheen, J., Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants (2000) Proceedings of the National Academy of Sciences of the United States of America, 97, pp. 2940-2945
  • Guan, L.M., Zhao, J., Scadalios, J.G., Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response (2000) The Plant Journal, 22, pp. 87-95
  • Pei, Z.M., Murata, Y., Benning, G., Thomine, S., Klusener, B., Allen, G.J., Grill, E., Schroeder, J.I., Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells (2000) Nature, 406, pp. 731-734
  • Zhang, X., Zhang, L., Dong, F., Gao, J., Galbraith, D.W., Song, C.P., Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba (2001) Plant Physiology, 126, pp. 1438-1448
  • Desikan, R., Mackerness, S.A.H., Hancock, J.T., Neill, S.J., Regulation of the Arabidopsis transcriptome by oxidative stress (2001) Plant Physiology, 127, pp. 159-172
  • Kwak, J.M., Mori, I.C., Pei, Z.M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E., Schroeder, J.I., NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis (2003) The EMBO Journal, 22, pp. 2623-2633
  • Xiong, L., Zhu, J.K., Molecular and genetic aspects of plant responses to osmotic stress (2002) Plant Cell and Environment, 25, pp. 131-139
  • Yuasa, T., Ichimura, K., Mizoguchi, T., Shinozaki, K., Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase (2001) Plant and Cell Physiology, 42, pp. 1012-1016
  • Harmon, A.C., Calcium-regulated protein kinases of plants (2003) Gravitational and Space Biology Bulletin, 16, pp. 83-90
  • Urao, T., Katagiri, T., Mizoguchi, T., Yamaguchi-Shinozaki, K., Hayashida, N., Shinozaki, K., Two genes that encode Ca2_-dependent protein kinases are induced by drought and high salt stresses in Arabidopsis thaliana (1994) Molecular and General Genetics, 224, pp. 331-340
  • Pei, Z.M., Ward, J.M., Harper, J.F., Schroeder, J.I., A novel chloride channel in Vicia faba guard cell vacuoles activated by the serine/threonine kinase, CDPK (1996) The EMBO Journal, 15, pp. 6564-6574
  • Sheen, J., Ca2+-dependent protein kinases and stress signal transduction in plants (1996) Science, 274, pp. 1900-1902
  • Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., Izui, K., Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants (2000) The Plant Journal, 23, pp. 319-327
  • Patharkar, O.R., Cushman, J.C., A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallium phosphorylates a two-component pseudo-response regulator (2000) The Plant Journal, 24, pp. 679-691
  • Capiati, D.A., País, S.M., Téllez-Iñón, M.T., Wounding increases salt tolerance in tomato plants: evidence on the participation of calmodulin-like activities in cross-tolerance signalling (2006) Journal of Experimental Botany, 57, pp. 2391-2400
  • Reddy, A.S.N., Ali, G.S., Celesnik, H., Day, I.S., Coping with Stresses: Roles of Calcium-and Calcium/Calmodulin-Regulated Gene Expression (2011) The Plant Cell, 23, pp. 2010-2032
  • Chehab, E.W., Patharker, O.R., Hegeman, A.D., Taybi, T., Cushman, J.C., Autophosphorylation and subcellular localization dynamics of a salt-and water deficit induced calcium-dependent protein kinase from ice plant (2004) Plant Physiology, 135, pp. 1430-1446
  • Li, Z., Komatsu, S., Molecular cloning and characterization of calreticulin, a calcium-binding protein involved in the regeneration of rice cultured suspension cells (2000) European Journal of Biochemistry, 267, pp. 737-745
  • Yoon, G.M., Cho, H.S., Ha, H.J., Liu, J.R., Lee, H.S., Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein (1999) Plant Molecular Biology, 39, pp. 1991-1001
  • Zhu, S.Y., Yu, X.C., Wang, X.J., Zhao, R., Li, Y., Fan, R.C., Shang, Y., Zhang, D.P., Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis (2007) The Plant Cell, 19, pp. 3019-3036
  • Choi, H.I., Park, H.J., Park, J.H., Kim, S., Im, M.Y., Seo, H.H., Kim, Y.W., Kim, S.Y., Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity (2005) Plant Physiology, 139, pp. 1750-1761
  • Mori, I.C., Murata, Y., Yang, Y., Munemasa, S., Wang, Y.F., Andreoli, S., Tiriac, H., Schroeder, J.I., CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-and Ca2 -permeable channels and stomatal closure (2006) PLoS Biology, 4, pp. e327
  • Zou, J.J., Wei, F.J., Wang, C., Wu, J.J., Ratnasekera, D., Liu, W.X., Wu, W.H., Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid-and Ca2+-mediated stomatal regulation in response to drought stress (2010) Plant Physiology, 154, pp. 1232-1243
  • Zhao, R., Sun, H.L., Mei, C., Wang, X.J., Yan, L., Liu, R., Zhang, X.F., Zhang, D.P., The Arabidopsis Ca2+-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth (2011) New Phytologist, 192, pp. 61-73
  • Choi, H., Hong, J., Ha, J., Kang, J., Kim, S.Y., ABFs, a family of ABA-responsive element binding factors (2000) Journal of Biological Chemistry, 275, pp. 1723-1730
  • Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., Yamaguchi-Shinozaki, K., Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions (2000) Proceedings of the National Academy of Sciences of the United States of America, 97, pp. 11632-11637
  • Choi, H.I., Park, H.J., Park, J.H., Kim, S., Im, M.Y., Seo, H.H., Kim, Y.W., Kim, S.Y., Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity (2005) Plant Physiology, 139, pp. 1750-1761
  • Zhu, J.K., Salt and drought stress signal transduction in plants (2002) Annual Review of Plant Biology, 53, pp. 247-273
  • Ishitani, M., Liu, J., Halfter, U., Kim, C.S., Shi, W., Zhu, J.K., SOS3 function in plant salt tolerance requires N-myristoylation and calcium-binding (2000) The Plant Cell, 12, pp. 1667-1677
  • Liu, J., Ishitani, M., Halfter, U., Kim, C.S., Zhu, J.K., The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance (2000) Proceedings of the National Academy of Sciences of the United States of America, 97, pp. 3730-3734
  • Shi, H., Ishitani, M., Kim, C.S., Zhu, J.K., The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter (2000) Proceedings of the National Academy of Sciences of the United States of America, 97, pp. 6896-6901
  • Qiu, Q.S., Guo, Y., Dietrich, M.A., Schumaker, K.S., Zhu, J.K., Regulation of SOS1, a plasma membrane Na/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3 (2002) Proceedings of the National Academy of Sciences of the United States of America, 99, pp. 8436-8441
  • Quintero, F.J., Ohta, M., Shi, H., Zhu, J.K., Pardo, J.M., Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis (2002) Proceedings of the National Academy of Sciences of the United States of America, 99, pp. 9061-9066
  • Batelli, G., Verslues, P.E., Agius, F., Qiu, Q., Fujii, H., Pan, S., Schumaker, K.S., Zhu, J.K., SOS2 promotes salt tolerance in part by interacting with the vaculoar H?-ATPase and upregulating its transport activity (2007) Molecular and Cellular Biology, 27, pp. 7781-7790
  • Zhu, J.K., Cell signaling under salt, water and cold stresses (2001) Plant Biology, 4, pp. 401-406
  • Guo, Y., Halfter, U., Ishitani, M., Zhu, J.K., Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance (2001) The Plant Cell, 13, pp. 1383-1400
  • Sanchez-Barrena, M.J., Fujii, H., Angulo, I., Martinez-Ripoll, M., Zhu, J.K., Albert, A., The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3 (2007) Molecular Cell, 26, pp. 427-435
  • Ohta, M., Guo, Y., Halfter, U., Zhu, J.K., A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C AB12 (2003) Proceedings of the National Academy of Sciences of the United States of America, 100, pp. 11771-11776
  • Qiu, Q.S., Guo, Y., Quintero, F.J., Pardo, J.M., Schumaker, K.S., Zhu, J.K., Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the SOS pathway (2004) Journal of Biological Chemistry, 279, pp. 207-215
  • D'Angelo, C., Weinl, S., Batistic, O., Pandey, G.K., Cheong, Y.H., Schültke, S., Albrecht, V., Kudla, J., Alternative complex formation of the Ca-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis (2006) The Plant Journal, 48, pp. 857-872
  • Mikolajczyk, M., Olubunmi, S.A., Muszynska, G., Klessig, D.F., Dobrowolska, G., Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells (2000) The Plant Cell, 12, pp. 165-178
  • Munnik, T., Ligterink, W., Meskiene, I., Calderini, O., Beyerly, J., Musgrave, A., Hirt, H., Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress (1999) The Plant Journal, 20, pp. 381-388
  • Laloi, C., Apel, K., Danon, A., Reactive oxygen signalling: the latest news (2004) Current Opinion in Plant Biology, 7, pp. 323-328
  • Farkas, I., Dombrádi, V., Miskei, M., Szabados, L., Koncz, C., Arabidopsis PPP family of serine/threonine phosphatases (2007) Trends in Plant Science, 12, pp. 169-176
  • País, S.M., Téllez-Iñón, M.T., Capiati, D.A., Serine/threonine protein phosphatases type 2A and their roles in stress signaling (2009) Plant Signaling and Behavior, 4, pp. 1013-1015
  • Yu, R.M., Zhou, Y., Xu, Z.F., Chye, M.L., Kong, R.Y., Two genes encoding protein phosphatase 2A catalytic subunits are differentially expressed in rice (2003) Plant Molecular Biology, 51, pp. 295-311
  • Yu, R.M., Wong, M.M., Jack, R.W., Kong, R.Y., Structure, evolution and expression of a second subfamily of protein phosphatase 2A catalytic subunit genes in the rice plant (Oryza sativa L.) (2005) Planta, 222, pp. 757-768
  • País, S.M., González, M.A., Téllez-Iñón, M.T., Capiati, D.A., Characterization of potato (Solanum tuberosum) and tomato (Solanum lycopersicum) protein phosphatases type 2A catalytic subunits and their involvement in stress responses (2009) Planta, 230, pp. 13-25
  • Xu, C., Jing, R., Mao, X., Jia, X., Chang, X., A wheat (Triticum aestivum) protein phosphatase 2A catalytic subunit gene provides enhanced drought tolerance in tobacco (2007) Annals of Botany, 99, pp. 439-450
  • Tóth, E.C., Vissi, E., Kovács, I., Szöke, A., Ariño, J., Gergely, P., Dudits, D., Dombrádi, V., Protein phosphatase 2A holoenzyme and its subunits from Medicago sativa (2000) Plant Molecular Biology, 43, pp. 527-536
  • Blakeslee, J.J., Zhou, H.W., Heath, J.T., Skottke, K.R., Barrios, J.A., Liu, S.Y., DeLong, A., Specificity of RCN1-mediated protein phosphatase 2A regulation in meristem organization and stress response in roots (2008) Plant Physiology, 146, pp. 539-553
  • Merlot, S., Gosti, F., Guerrier, D., Vavasseur, A., Giraudat, J., The AB11 and AB12 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signaling pathway (2001) The Plant Journal, 25, pp. 295-303
  • Gosti, F., Beaudoin, N., Serizet, C., Webb, A.A., Vartanian, N., Giraudat, J., AB11 protein phosphatase 2C is a negative regulator of abscisic acid signaling (1999) The Plant Cell, 11, pp. 1897-1909
  • Allen, G.J., Kuchitsu, K., Chu, S.P., Murata, Y., Schroeder, J.I., Arabidopsis abi 1-1 and ab12-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells (1999) The Plant Cell, 11, pp. 1785-1798
  • Murata, Y., Pei, Z.M., Mori, I.C., Schroeder, J., Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in ab11-1 and ab12-1 protein phosphatase 2C mutants (2001) The Plant Cell, 13, pp. 2513-2523
  • Saez, A., Apostolova, N., Gonzalez-Guzman, M., Gonzalez-Garcia, M.P., Nicolas, C., Lorenzo, O., Rodriguez, P.L., Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling (2004) The Plant Journal, 37, pp. 354-369
  • Kuhn, J.M., Boisson-Dernier, A., Dizon, M.B., Maktabi, M.H., Schroeder, J.I., The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA (2006) Plant Physiology, 140, pp. 127-139
  • Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., Shinozaki, K., Hirayama, T., ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs (2006) Plant Physiology, 140, pp. 115-126
  • Nishimura, N., Yoshida, T., Kitahata, N., Asami, T., Shinozaki, K., Hirayama, T., ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed (2007) The Plant Journal, 50, pp. 935-949
  • Koornneef M.; L'eon-Kloosterziel, K.M., Schwartz, S.H., Zeevaart, J.A.D., The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis (1998) Plant Physiology and Biochemistry, 36, pp. 83-89
  • Liotenberg, S., North, H., Marion-Poll, A., Molecular biology and regulation of abscisic acid biosynthesis in plants (1999) Plant Physiology and Biochemistry, 37, pp. 341-350
  • Xiong, L., Ishitani, M., Lee, H., Zhu, J.K., The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold and osmotic stress responsive gene expression (2001) The Plant Cell, 13, pp. 206-383
  • Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R., Abrams, S.R., Abscisic acid: Emergence of a core signaling network (2010) Annual Review of Plant Biology, 61, pp. 651-679
  • Kim, T.H., Bohmer, M., Hu, H., Nishimura, N., Schroeder, J.I., Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ signaling (2010) Annual Review of Plant Biology, 61, pp. 561-591
  • Hubbard, K.E., Nishimura, N., Hitomi, K., Getzoff, E.D., Schroeder, J.I., Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions (2010) Genes & Development, 24, pp. 1695-1708
  • Seki, M., Umezawa, T., Urano, K., Shinozaki, K., Regulatory metabolic networks in drought stress responses (2007) Current Opinion in Plant Biology, 10, pp. 296-302
  • Zeevaart, J.A.D., Creelman, R.A., Metabolism and physiology of abscisic acid (1988) Annual Review of Plant Physiology and Plant Molecular Biology, 39, pp. 439-473
  • Pierce, M., Raschke, K., The relationship between abscisic acid accumulation and turgor (1978) Plant Physiology, 61 (SUPPL.), p. 25
  • Marin, E., Nussaume, L., Quesada, A., Gonneau, M., Sotta, B., Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana (1996) The EMBO Journal, 15, pp. 2331-1242
  • Tan, B.C., Schwartz, S.H., Zeevaart, J.A.D., Mc-Carty, D.R., Genetic control of abscisic acid biosynthesis in maize (1997) Proceedings of the National Academy of Sciences of the United States of America, 94, pp. 12235-12340
  • Nambara, E., Marion-Poll, A., Abscisic acid biosynthesis and catabolism (2005) Annual Review of Plant Biology, 56, pp. 165-185
  • Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis (2001) The Plant Journal, 27, pp. 325-333
  • Qin, X., Zeevaart, J.A.D., The 9-cisepoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean (1999) Proceedings of the National Academy of Sciences of the United States of America, 96, pp. 15354-15361
  • Thompson, A.J., Jackson, A.C., Symonds, R.C., Mulholland, B.J., Dadswell, A.R., Blake, P.S., Burbidge, A., Taylor, I.B., Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid (2000) The Plant Journal, 23, pp. 363-374
  • Liotenberg, S., North, H., Marion-Poll, A., Molecular biology and regulation of abscisic acid biosynthesis in plants (1999) Plant Physiology and Biochemistry, 37, pp. 341-350
  • Seo, M., Peeters, A.J.M., Koiwai, H., Oritani, T., Marion-Poll, A., The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves (2000) Proceedings of the National Academy of Sciences of the United States of America, 97, pp. 12908-12913
  • Hirayama, T., Shinozaki, K., Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA (2007) Trends in Plant Science, 12, pp. 343-351
  • Hirayama, T., Shinozaki, K., Research on plant abiotic stress responses in the post-genome era: past, present and future (2010) The Plant Journal, 61, pp. 1041-1052
  • Yamaguchi-Shinozaki, K., Shinozaki, K., Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters (2005) Trends in Plant Science, 10, pp. 88-94
  • Shi, H., Quintero, F.J., Pardo, J.M., Zhu, J.K., The putative plasma membrane Na/H+ antiporter SOS1 controls long distance Na+ transport in plants (2002) The Plant Cell, 14, pp. 465-477
  • Apse, M.P., Aharon, G.S., Snedden, W.A., Blumwald, E., Salt tolerance conferred by overexpression of a vacuolar NaCl/HCl-antiport in Arabidopsis (1999) Science, 285, pp. 1256-1258
  • Zhu, J.K., Plant salt tolerance (2001) Trends in Plant Science, 6, pp. 66-71
  • Shinozaki, K., Yamaguchi-Shinozaki, K., Gene expression and signal transduction in water-stress response (1997) Plant Physiology, 115, pp. 327-334
  • Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., Yamaguchi-Shinozaki, K., Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions (2000) Proceedings of the National Academy of Sciences of the United States of America, 97, pp. 11632-11637
  • Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K., Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1 (2006) Proceedings of the National Academy of Sciences of the United States of America, 103, pp. 1988-1993
  • Fujii, H., Zhu, J., Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction and stress (2009) Proceedings of the National Academy of Sciences of the United States of America, 106, pp. 8380-8385
  • Umezawa, T., Yoshida, R., Maruyama, K., Yamaguchi-Shinozaki, K., Shinozaki, K., SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana (2004) Proceedings of the National Academy of Sciences of the United States of America, 101, pp. 17306-17311
  • Kobayashi, Y., Yamamoto, S., Minami, H., Kagaya, Y., Hattori, T., Differential activation of the rice sucrose nonfermenting 1-related protein kinase2 family by hyperosmotic stress and abscisic acid (2004) The Plant Cell, 16, pp. 1163-1177
  • Kobayashi, Y., Murata, M., Minami, H., Yamamoto, S., Kagaya, Y., Hobo, T., Abscisic acid activated SnRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors (2005) The Plant Journal, 44, pp. 939-949
  • Johnson, R.R., Wagner, R.L., Verhey, S.D., Walker-Simmons, M.K., The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences (2002) Plant Physiology, 130, pp. 837-846
  • Abe, H., Urao, T., Ito, T., Sekic, M., Shinozaki, K., Yamaguchi-Shinozaki, K., Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling (2003) The Plant Cell, 15, pp. 63-78
  • Jiang, C., Iu, B., Singh, J., Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus (1996) Plant Molecular Biology, 30, pp. 679-684
  • Baker, S.S., Wilhelm, K.S., Thomashow, M.F., The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression (1994) Plant Molecular Biology, 24, pp. 701-713
  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought-and low temperature-responsive gene expression, respectively, in Arabidopsis (1998) Plant Cell, 10, pp. 1391-1406
  • Shinwari, Z.K., Nakashima, K., Miura, S., Kasuga, M., Seki, M., An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression (1998) Biochemical and Biophysical Research Communications, 250, pp. 161-170
  • Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M., Thomashow, M.F., Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-inducedCORgene expression (1998) The Plant Journal, 16, pp. 433-442
  • Haake, V., Cook, D., Riechmann, J.L., Pined, A.O., Thomashow, M.F., Zhang, J.Z., Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis (2002) Plant Physiology, 130, pp. 639-648
  • Narusaka, Y., Nakashima, K., Shinwari, Z.K., Sakuma, Y., Furihata, T., Abe, H., Narusaka, M., Yamaguchi-Shinozaki, K., Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses (2003) The Plant Journal, 34, pp. 137-148
  • Bhatnagar-Mathur, P., Vadez, V., Sharma, K.K., Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects (2008) Plant Cell Reports, 27, pp. 411-424
  • Century, K., Reuber, T.L., Ratcliffe, O.J., Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products (2008) Plant Physiology, 147, pp. 20-29
  • Nakashima, K., Shinwari, Z.K., Sakuma, Y., Seki, M., Miura, S., Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration-and high-salinity-responsive gene expression (2000) Plant Molecular Biology, 42, pp. 657-665
  • Stockinger, E.J., Gilmour, S.J., Thomashow, M.F., Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit (1997) Proceedings of the National Academy of Sciences of the United States of America, 94, pp. 1035-1040
  • Guiltinan, M.J., Marcotte, W.R., Quatrano, R.S., A plant leucine zipper protein that recognizes an abscisic acid response element (1990) Science, 250, pp. 267-271
  • Hobo, T., Kowyama, Y., Hattori, T., A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription (1999) Proceedings of the National Academy of Sciences of the United States of America, 96, pp. 15348-15353
  • Nakagawa, H., Ohmiya, K., Hattori, T., A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid (1996) The Plant Journal, 9, pp. 217-227
  • Nantel, A., Quatrano, R.S., Characterization of three rice basic/leucine zipper factors, including two inhibitors of EmBP-1 DNA binding activity (1996) The Journal of Biological. Chemistry, 271, pp. 31296-312305
  • Oeda, K., Salinas, J., Chua, N.H., A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes (1991) The EMBO Journal, 10, pp. 1793-17802
  • Finkelstein, R.R., Lynch, T.J., The Arabidopsis abscisic acid response gene AB15 encodes a basic leucine zipper transcriptional factor (2000) The Plant Cell, 12, pp. 599-609
  • Bastola, D.R., Pethe, V.V., Winicov, I., Alfin1, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene (1998) Plant Molecular Biology, 38, pp. 1123-1135
  • Yáñez, M., Cáceres, S., Orellana, S., Bastías, A., Verdugo, I., Ruiz-Lara, S., Casaretto, J.A., An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes (2009) Plant Cell Reports, 28, pp. 1497-1507
  • Hsieh, T.H., Li, C.W., Su, R.C., Cheng, C.P., Sanjaya Tsai, Y.C., Chan, M.T., A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response (2010) Planta, 231, pp. 1459-1473
  • Chaves, M.M., Maroco, J.P., Pereira, J.S., Understanding plant responses to drought-from genes to the whole plant (2003) Functional Plant Biology, 30, pp. 239-264
  • Tabaeizadeh, Z., Drought-induced responses in plant cells (1998) International Review of Cytology, 182, pp. 193-247
  • Rontein, D., Basset, G., Hanson, A.D., Metabolic engineering of osmoprotectant accumulation in plants (2002) Metabolic Engineering, 4, pp. 49-56
  • Crowe, J.H., Carpenter, J.F., Crowe, L.M., The role of vitrification in anhydrobiosis (1998) Annual Review of Physiology, 60, pp. 73-103
  • Hincha, D.K., Zuther, E., Hellwege, E.M., Heyer, A.G., Specific effects of fructo-and gluco-oligosaccharides in the preservation of liposomes during drying (2002) Glycobiology, 12, pp. 103-110
  • Villadsen, D., Rung, J.H., Nielsen, T.H., Osmotic stress changes carbohydrate partitioning and fructose-2,6-bisphosphate metabolism in barley leaves (2005) Functional Plant Biology, 32, pp. 1033-1043
  • Tunnacliffe, A., Wise, M.J., The continuing conundrum of the LEA proteins (2007) Naturwissenschaften, 94, pp. 791-812
  • Garay-Arroyo, A., Colmenero-Flores, J.M., Garciarrubio, A., Covarrubias, A.A., Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit (2000) Journal of Biological Chemistry, 275, pp. 5668-5674
  • Goyal, K., Walton, L.J., Tunnacliffe, A., LEA proteins prevent protein aggregation due to water stress (2005) Biochemical Journal, 388, pp. 151-157

Citas:

---------- APA ----------
Capiati, D.A., García, M.N.M. & Ulloa, R.M. (2012) . Water-deficit stress signal transduction pathways in plants: From sensing to response. Abiotic Stress: New Research, 99-132.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816194_v_n_p99_Capiati [ ]
---------- CHICAGO ----------
Capiati, D.A., García, M.N.M., Ulloa, R.M. "Water-deficit stress signal transduction pathways in plants: From sensing to response" . Abiotic Stress: New Research (2012) : 99-132.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816194_v_n_p99_Capiati [ ]
---------- MLA ----------
Capiati, D.A., García, M.N.M., Ulloa, R.M. "Water-deficit stress signal transduction pathways in plants: From sensing to response" . Abiotic Stress: New Research, 2012, pp. 99-132.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816194_v_n_p99_Capiati [ ]
---------- VANCOUVER ----------
Capiati, D.A., García, M.N.M., Ulloa, R.M. Water-deficit stress signal transduction pathways in plants: From sensing to response. Abiotic Stress: New Res. 2012:99-132.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816194_v_n_p99_Capiati [ ]