Parte de libro

Barrionuevo, M.; Alejandra, M.; Garavaglia, L.; López, N.; Méndez, N.; Sosa, G.; Candal, R.; Cerdeira, S.; Ceretti, H.; Ramírez, S.; Reciulschi, E.; Zalts, A.; Vullo, D.L. "Knowing more about metals, microbes and environment interactions: How to improve wastewater biotreatments" (2011) Bioremediation: Biotechnology, Engineering and Environmental Management:383-403
Estamos trabajando para incorporar este artículo al repositorio

Abstract:

Through evolution, microorganisms have developed effective mechanisms that help them regulate their cellular function in response to changes in its microenvironment. One of these survival strategies is metal resistance, which becomes a useful tool for biotreatment of metal loaded wastewaters. For the development of a successful biotreatment, studies on metal-microbes, microbe-surfaces and metal-environment interactions are required. The correct design of laboratory scale bioreactors for electroplating wastes, containing Cd(II), Zn(II), Ni(II) or Cr(VI), is the first step of our research project. In that way, the use of metal resistant indigenous bacteria either in suspension or in packed bed reactors is the chosen methodology to fulfil our general aim. Several aspects should be studied in order to implement high-efficient processes: a) bacterial interactions with Cd(II) and Zn(II) in terms of biosorption mechanisms; b) biotransformation of Cr(VI) to Cr(III); c) Ni(II)-microbe interactions; d) metal influence on bacterial motility; e) bacterial capacity of biofilm development and microbial community behaviour and f) complexing capacity of environment components with metals. © 2010 Nova Science Publishers, Inc. All rights reserved.

Registro:

Documento: Parte de libro
Título:Knowing more about metals, microbes and environment interactions: How to improve wastewater biotreatments
Autor:Barrionuevo, M.; Alejandra, M.; Garavaglia, L.; López, N.; Méndez, N.; Sosa, G.; Candal, R.; Cerdeira, S.; Ceretti, H.; Ramírez, S.; Reciulschi, E.; Zalts, A.; Vullo, D.L.
Filiación:Área Química, Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina
Depto. de Química Biológica, Facultad de Ciencias Exactas y Naturales (UBA), Ciudad Universitaria, Buenos Aires, Argentina
INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales (UBA), Ciudad Universitaria, Buenos Aires, Argentina
ECyT-UNSAM, Campus Miguelete, Buenos Aires, Argentina
Año:2011
Página de inicio:383
Página de fin:403
Título revista:Bioremediation: Biotechnology, Engineering and Environmental Management
Título revista abreviado:Bioremediation: Biotechnology, Eng. and Environ. Manage.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816112_v_n_p383_Barrionuevo

Referencias:

  • Ackerley, D.F., Gonzalez, C.F., Keyhan, M., Blake II, R., Matin, A., Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction (2004) Environmental Microbiology, 6 (8), pp. 851-860
  • Bridge, T.A.M., White, C., Gadd, G.M., Extracellular metal-binding activity of the sulphate-reducing bacterium Desulfococcus multivorans (1999) Microbiology, 145, pp. 2987-2995
  • Bruland, K., Complexation of cadmium by natural organic ligands in the central North Pacific (1992) Limnology and Oceanography, 37 (5), pp. 1008-1017
  • Butterman, W.C., Reston, J.P., Mineral Commodity Profiles-Cadmium (2000) U.S. Geological Survey, Open-File Report 02-238, , http://pubs.usgs.gov/of/2002/of02-238/of02-238.pdf
  • Caiazza, N., Merrit, J., Brothers, K., O'Toole, G., Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14 (2007) Journal of Bacteriology, 189 (9), pp. 3603-3612
  • Ceretti, H.M., Vullo, D.L., Zalts, A., Ramírez, S.A., Cadmium Complexation in culture media (2006) Electroanalysis, 18 (5), pp. 493-498
  • Ceretti, H.M., Vullo, D.L., Zalts, A., Ramírez, S.A., Effect of bacterial growth in the complexing capacity of a culture medium supplemented with cadmium(II) (2010) World Journal of Microbiology and Biotechnology, 26, pp. 847-853
  • Chen, X.C., Wang, Y.P., Lin, Q., Shi, J.Y., Wu, W.X., Chen, Y.X., Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1 (2005) Colloids and Surfaces B: Biointerfaces, 46, pp. 101-107
  • Cobelo-García, A., Prego, R., Nieto, O., Chemical speciation of dissolved lead in polluted environments. A case study: the Pontevedra Ria (NW Spain) (2003) Ciencias Marinas, 29, pp. 377-388
  • Davis, T.A., Volesky, B., Mucci, A., A review of the biochemistry heavy metal biosorption by brown algae (2003) Water Research, 37, pp. 4311-4330
  • Domingos, R.F., Benedetti, M.F., Croué, J.P., Pinheiro, J.P., Electrochemical methodology to study labile trace metal/natural organic matter complexation at low concentration levels in natural waters (2004) Analytica Chimica Acta, 521, pp. 77-86
  • Donnat, J.R., Van Den Berg, C.M.G., A new cathodic stripping voltammetric method for determining organic copper complexation in seawater (1992) Marine Chemistry, 38, pp. 69-90
  • EC Proposal for a European Parliament and Council Decision Establishing the List of Priority Substances in the Field of Water Policy (2000), Brussels, Belgium, European Commission; COM, 47 Final; Eisler, R., Chromium hazards to fish, wildlife, and invertebrates: a synoptic review; Contaminant Hazard Reviews (Report N° 6) (1986) Biological Report, 85. , (1.6)
  • Eisler, R., Nickel hazards to fish, wildlife, and invertebrates: a synoptic review; Contaminant Hazard Reviews (Report N° 34) (1998) Biological Science Report USGS/BRD/BSR-1998-0001
  • Fernandez-Pinas, F., Mateo, P., Bonilla, I., Binding of cadmium by cyanobacterial growth media: Free ion concentration as a toxicity index to the cyanobacterium Nostoc UAM 208 (1991) Archives of Environmental Contamination and Toxicology, 21, pp. 425-431
  • Freundlich, H., Kapillarchemie. Akademische Verlagsgessellschaft (1909), Leipzig, Germany; Gadd, G.M., Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment (2009) Journal of Chemical Technology & Biotechnology, 84, pp. 13-28
  • Garavaglia, L., Cerdeira, S.B., Vullo, D.L., Chromium (VI) biotransformation by β-and γ-Proteobacteria from natural polluted environments: a combined biological and chemical treatment for industrial wastes (2010) Journal of Hazardous Materials, 175, pp. 104-110
  • Gonzalez Gil, G., Jansen, S., Zandvoort, M.H., Van Leewen, H.P., Effect of yeast extra ton speciation and bioavailability of nickel and cobalto in anaerobic reactors (2003) Biotechnology and Bioengineering, 82, pp. 134-142
  • Gordon, R.B., Bertram, M., Graedel, T.E., Metal Stocks and Sustainability, PNAS (2006), 103, pp. 1209-1214; Guibaud, G., Bordas, F., Saaid, A., D'abzac, P., Van Hullebusch, E., Effect of pH on cadmium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains (2008) Colloids and Surfaces B: Biointerfaces, 63, pp. 48-54
  • Guibaud, G., Van Hullebusch, B.F., D'Abzac, P., Joussein, E., Sorption of Cd(II) and Pb(II) by exopolymeric substances (EPS) extracted from activated sludges and pure bacterial strains: Modeling of the metal/ligand ratio effect an role of the mineral fraction (2009) Bioresource Technology, 100, pp. 2959-2968
  • Hermoso, F.G., Bartacek, J., Janseri, S., Lens, P.N.L., Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application (2009) Science of Total Environment, 407, pp. 3652-3667
  • Jefferson, K., What drives bacteria to produce a biofilm? (2004) FEMS Microbiology Letters, 236, pp. 163-173
  • Johnson, J., Harper, E.M., Lifset, R., Graedel, T.E., Dining at the Periodic Table: Metals Concentrations as They Relate to Recycling (2007) Environmental Science and Technology, 41, pp. 1759-1765
  • Kato, J., Kim, H.E., Takiguchi, N., Kuroda, A., Ohtake, H., Pseudomonas aeruginosa as a model microorganism for investigation of chemotactic behaviours in ecosystem (2008) Journal of Bioscience and Bioengineering, 106, pp. 1-7
  • Laglera, L.M., Battaglia, G., Van Den Berg, C.M.G., Determination of humic substances in natural waters by cathodic stripping voltammetry of their complexes with iron (2007) Analytica Chimica Acta, 599, pp. 58-66
  • Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum (1918) Journal of American Chemical Society, 40, pp. 1361-1403
  • Méndez, M., Ramírez, S.A.M., Ceretti, H.M., Zalts, A., Candal, R., Vullo, D.L., Pseudomonas veronii 2E surface interactions with Zn(II) and Cd(II) (2011) Global Journal of Environmental Science and Technology, , (in press)
  • Mergeay, M., Monchy, S., Vallaeys, T., Auquier, V., Benotmane, A., Bertin, P., Taghavi, S., Wattiez, R., Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes (2003) FEMS Microbiology Reviews, 27, pp. 385-410
  • Meylan, S., Odzak, N., Behra, R., Sigg, L., Speciation of copper and zinc in natural freshwater: comparison of voltammetric measurements, diffusive gradients in thin films (DGT) and chemical equilibrium models (2004) Analytica Chimica Acta, 510, pp. 91-100
  • Minaberry, Y.S., Gordillo, G.J., Complexing capacity of natural waters carrying a great amount of suspended matter (2007) Chemosphere, 69 (9), pp. 1465-1473
  • Opperman, D.J., Van Heerden, E., Aerobic Cr(VI) reduction by Thermus scotoductus strain SA-01 (2007) Journal of Applied Microbiology, 103, pp. 1907-1913
  • Pal, A., Paul, A.K., Microbial extracellular polymeric substances: central elements in heavy metal bioremediation (2008) Indian Journal of Microbiology, 48, pp. 49-64
  • Pesavento, M., Alberti, G., Biesuz, R., Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: A review (2009) Analytica Chimica Acta, 631, pp. 129-141
  • Prado Acosta, M., Valdman, E., Leite, S.G.F., Battaglini, F., Ruzal, S.M., Biosorption of copper by Paenibacillus polimyxa cells and their exopolysaccharide (2005) World Journal of Microbiology and Biotechnology, 21, pp. 1157-1163
  • Santos-Echeandía, J., Laglera, L.M., Prego, R., Van Den Berg, C.M.G., Copper speciation in estuarine waters by forward and reverse titrations (2008) Marine Chemistry, 108, pp. 148-158
  • SAyDS: Secretaría de Ambiente y Desarrollo Sustentable. Programa de vigilancia y control http://www.caru.org.uy/13.pdf, Contaminación hídrica industrial. Estudio de caso: Establecimientos Potencialmente Generadores de Metales Pesados Area Metropolitana-; Scarponi, G., Capodaglio, G., Barbante, C., Cescon, P., Elemental Speciation (1996) Bioinorganic Chemistry, p. 363. , In S. Caroli (Ed.), Wiley, Chichester
  • Shrout, J., Chopp, D., Just, C., Hentzer, M., Givskov, M., Parsek, M., The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional (2006) Molecular Microbiology, 62 (5), pp. 1264-1277
  • Sigg, L., Sturm, M., Kistler, D., Vertical transport of heavy metals by settling particles in Lake Zurich (1987) Limnology and Oceanography, 32, pp. 112-130
  • Teitzel, G.M., Parsek, M.R., Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa (2003) Applied and Environmental Microbiology, 69 (4), pp. 2313-2320
  • Thacker, U., Parikh, R., Shouche, Y., Madamwar, D., Reduction of chromate by cell-free extract of Brucella sp. Isolated from Cr (VI) contaminated sites (2007) Bioresource Technology, 98, pp. 1541-1547
  • Town, R.M., Filella, M., Crucial role of the detection window in metal ion speciation analysis in aquatic systems: the interplay of thermodynamic and kinetic factors as exemplified by nickel and cobalt (2002) Analytica Chimica Acta, 466, pp. 285-293
  • Van Leeuwen, H., Cleven, R., Buffle, J., Voltammetric techniques for complexation measurements in natural aquatic media (1989) Pure & Applied Chemistry, 61, pp. 255-274
  • Van Veen, E., Burton, E.N., Comber, S., Gardner, M., Speciation of Copper in sewage effluents and its toxicity to Daphnia Magna (2002) Environmental Toxicology and Chemistry, 21 (2), pp. 275-280
  • Vijayaraghavan, K., Yun, Y., Bacterial biosorbents and biosorption (2008) Biotechnology Advances, 26, pp. 266-291
  • Volesky, B., Detoxification of metal-bearing effluents: biosorption for the next century (2001) Hydrometallurgy, 59, pp. 203-216
  • Vullo, D.L., Ceretti, H.M., Daniel, M.A., Ramírez, S.A.M., Zalts, A., Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E (2008) Bioresource Technology, 99, pp. 5574-5581
  • Vullo, D.L., Ceretti, H.M., Ramírez, S.A.M., Zalts, A., Heavy metals and microorganisms in the environment: taking advantage of reciprocal interactions for the development of a wastewater treatment (2007) Progress in Environmental Microbiology, pp. 111-149. , In Myung-Bo Kim Eds., Nova Science Publishers, Inc., New York
  • Wang, J., Chen, C., Biosorbents for heavy metals removal and their future (2009) Biotechnolology Advances, 27, pp. 195-226
  • Wang, R., Chakrabarti, C.L., Copper speciation by competing ligand exchange method using differential pulse anodic stripping voltammetry with ethylenediaminetetraacetic acid (EDTA) as competing ligand (2008) Analytica Chimica Acta, 614, pp. 153-160
  • Wisniewski Jakubaa, R., Moffett, J.W., Saito, M.A., Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean (2008) Analytica Chimica Acta, 614, pp. 143-152
  • Xue, H., Sigg, L., Cadmium speciation and complexation by natural organic ligands in fresh water (1998) Analytica Chimica Acta, 363, pp. 249-259
  • Yin, P., Yu, Q., Jin, B., Ling, Z., Biosorption removal of cadmium from aqueous solution by using pretreated fungal biomass cultured from starch wastewater (1999) Water Research, 33, pp. 1960-1963

Citas:

---------- APA ----------
Barrionuevo, M., Alejandra, M., Garavaglia, L., López, N., Méndez, N., Sosa, G., Candal, R.,..., Vullo, D.L. (2011) . Knowing more about metals, microbes and environment interactions: How to improve wastewater biotreatments. Bioremediation: Biotechnology, Engineering and Environmental Management, 383-403.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816112_v_n_p383_Barrionuevo [ ]
---------- CHICAGO ----------
Barrionuevo, M., Alejandra, M., Garavaglia, L., López, N., Méndez, N., Sosa, G., et al. "Knowing more about metals, microbes and environment interactions: How to improve wastewater biotreatments" . Bioremediation: Biotechnology, Engineering and Environmental Management (2011) : 383-403.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816112_v_n_p383_Barrionuevo [ ]
---------- MLA ----------
Barrionuevo, M., Alejandra, M., Garavaglia, L., López, N., Méndez, N., Sosa, G., et al. "Knowing more about metals, microbes and environment interactions: How to improve wastewater biotreatments" . Bioremediation: Biotechnology, Engineering and Environmental Management, 2011, pp. 383-403.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816112_v_n_p383_Barrionuevo [ ]
---------- VANCOUVER ----------
Barrionuevo, M., Alejandra, M., Garavaglia, L., López, N., Méndez, N., Sosa, G., et al. Knowing more about metals, microbes and environment interactions: How to improve wastewater biotreatments. Bioremediation: Biotechnology, Eng. and Environ. Manage. 2011:383-403.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816112_v_n_p383_Barrionuevo [ ]