Parte de libro

Bonelli, P.R.; Cukierman, A.L. "Pyrolysis characteristics of different kinds of lignins" (2012) Lignin: Properties and Applications in Biotechnology and Bioenergy:355-380
Estamos trabajando para incorporar este artículo al repositorio

Abstract:

The present chapter deals with pyrolysis characteristics of different kinds of lignins, focusing on an industrial raw lignin arising from the Kraft pulping process, a commercial alkali lignin, and Klason lignins lab-isolated from two lignocellulosic biomasses with different lignin contents (27 and 57 wt%), emerging from the processing of agro-industrial products. Characterization of the lignins includes determination of ash content, elemental composition, Fourier-transform infrared (FT-IR) spectra, and surface morphological features by scanning electronic microscopy (SEM). Pyrolysis characteristics of the different lignin samples as well as of the whole biomasses from which they are obtained, in the case of Klason lignins, are comparatively examined by non-isothermal thermogravimetric analysis from room temperature up to 1000 °C. In order to investigate possible effects of mineral matter inherently present in the industrial Kraft lignin on its pyrolytic behaviour, pyrolysis characteristics are also determined using samples prior subjected to demineralization by a mild acid treatment. The industrial Kraft lignin possesses the highest contents of ash (16 wt%) and elemental carbon (62.2 wt%) among all the investigated raw lignins. A similar pyrolytic behavior is found for the industrial raw Kraft lignin and the commercial alkali one. It is characterized by differentiated thermal degradation domains, as evidenced by three peaks in reaction rate profiles, successively attributable to moisture evolution, primary and secondary pyrolysis, with progressive increase in temperature. Mineral matter reduction of the industrial Kraft lignin induces some structural changes, as suggested by SEM images and FT-IR spectra, and noticeable modifications in its pyrolytic behavior, leading to shift primary pyrolysis to higher temperatures, to increase the maximum primary pyrolysis rate, and to inhibit secondary pyrolysis. Pyrolysis characteristics for binary mixtures composed of equal proportions of the commercial alkali lignin and polyethylene in powder form, as a representative major polymeric waste of massive post-consumed plastics, are also examined following some current research trends towards alternative energy generation based on the advantageously favourable environmental nature of bio-resources and the higher energy content of synthetic polymers. No interactions between the lignin and polyethylene are found, the pyrolytic behaviour of the mixtures arising from independent thermal degradation of the individual constituents. On the other hand, the two Klason lignins separated from sawdust of Aspidosperma australe wood and nutshells from Bertholletia excelsa, exhibit different ash contents and elemental compositions as well as noticeable differences in their pyrolysis characteristics depending on the biomass source and with respect to the pyrolytic behaviour of the untreated parent biomasses. Compared to the raw alkali lignins, the Klason lignins do not seem to undergo secondary pyrolysis and are more resistant to thermal degradation, likely due to more condensed chemical structures related to the method applied for isolation. Overall, the results highlight the marked influence of both the botanical origin of the bio-resource and extraction method used to obtain the lignins on their physicochemical characteristics and pyrolytic behaviour.© 2012 Nova Science Publishers, Inc. All rights reserved.

Registro:

Documento: Parte de libro
Título:Pyrolysis characteristics of different kinds of lignins
Autor:Bonelli, P.R.; Cukierman, A.L.
Filiación:Programa de Investigacion y Desarrollo de Fuentes Alternativas de Materias Primas y Energia, Depto. de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes 2620, Ciudad Universitaria, (C1428BGA) Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, (C1033AAJ) Buenos Aires, Argentina
Depto. de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (C1113AAD) Buenos Aires, Argentina
Año:2012
Página de inicio:355
Página de fin:380
Título revista:Lignin: Properties and Applications in Biotechnology and Bioenergy
Título revista abreviado:Lignin: Prop. and Appl. in Biotechnol. and Bioenergy
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816112_v_n_p355_Bonelli

Referencias:

  • Balat, M., Balat, M., Kirtay, E., Balat, H., Main routes for the thermo-conversion of biomass into fuels and chemicals (2009) Energy Conversion and Management, 50, pp. 3147-3157. , Part 1: Pyrolysis systems
  • Baptista, C., Robert, D., Duarte, A.P., Effect of pulping conditions on lignin structure from maritime pine kraft pulps (2006) Chemical Engineering Journal, 121, pp. 153-158
  • Basso, M.C., Cerrella, E.G., Cukierman, A.L., Cadmium uptake by lignocellulosic materials: Effect of lignin content (2004) Separation Science and Technology, 39, pp. 1163-1175
  • Basso, M.C., Cerrella, E.G., Buonomo, E.L., Bonelli, P.R., Cukierman, A.L., Thermochemical conversion of Arundo donax into useful solid products (2005) Energy Sources, 27, pp. 1429-1438
  • Baumlin, S., Broust, F., Bazer-Bachi, F., Bourdeaux, T., Herbinet, O., Toutie Ndiaye, F., Ferrer, M., Lédé, J., Production of hydrogen by lignins fast pyrolysis (2006) International Journal of Hydrogen, 31, pp. 2179-2192
  • Betancur, M., Bonelli, P.R., Velásquez, J., Cukierman, A.L., Potentiality of lignin from the Kraft pulping process for removal of trace nickel from wastewater: Effect of demineralisation (2009) Bioresource Technology, 100 (3), pp. 1130-1137
  • Boeriu, C.G., Bravo, D., Gosselink, R.J.A., van Dam, J.E.G., Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy (2004) Industrial Crops and Products, 20 (2), pp. 205-218
  • Bonelli, P.R., Della Rocca, P.A., Cerrella, E.G., Cukierman, A.L., Effect of pyrolysis temperature on composition, surface properties and thermal degradation rates of Brazil nut shells (2001) Bioresource Technology, 76, pp. 15-22
  • Bonelli, P.R., Cerrella, E.G., Cukierman, A.L., Slow pyrolysis of nutshells: Characterization of derived chars and of process kinetics (2003) Energy Sources, 25, pp. 767-778
  • Bonelli, P.R., Buonomo, E.L., Cukierman, A.L., Pyrolysis of sugarcane bagasse and co-pyrolysis with an Argentinean subbituminous coal. Energy Sources (2007) Part A: Recovery, Utilization, and Environmental Effects, 29 (8), pp. 731-740
  • Braun, J.L., Holtman, K.M., Kadla, J.F., Lignin-based carbon fibers: Oxidative thermostabilization of kraft lignin (2005) Carbon, 43, pp. 385-394
  • Brodin, I., Sjohölm, E., Gellerstedt, G., The behavior of kraft lignin during thermal treatment (2010) Journal of Analytic and Applied Pyrolysis, 87, pp. 70-77
  • Cukierman, A.L., Metal ion biosorption potential of lignocellulosic biomasses and marine algae for wastewater treatment (2007) Adsorption Science and Technology, 25 (3-4), pp. 227-244
  • Das, P., Ganesh, A., Wangikar, P., Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products (2004) Biomass and Bioenergy, 27, pp. 445-457
  • De Oliveira, B.M.S., Martins Carvalho, A.H., Frota Soaresa, L., Pires de, A.R., Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions (2010) Journal Hazardous Materials, 174, pp. 84-92
  • Di Blasi, C., Branca, C., D'Errico, G., Degradation characteristics of straw and washed straw (2000) Thermochimica Acta, 364, pp. 133-142
  • Di Blasi, C., Modeling chemical and physical processes of wood and biomass pyrolysis (2008) Progress in Energy and Combustion Science, 34, pp. 47-90
  • El Mansouri, N.E., Salvadó, J., Structural characterization of technical lignins for the production of adhesives: Application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins (2006) Industrial Crops and Products, 24, pp. 8-16
  • El Mansouri, N.E., Pizzi, A., Salvadó, J., (2007) Lignin-based wood panel adhesives without formaldehyde., 65, pp. 65-70. , Holz als Roh-und Werkstoff
  • Faravelli, T., Frassoldati, A., Migliavacca, G., Ranzi, E., Detailed kinetic modeling of the thermal degradation of lignins (2010) Biomass and Bioenergy, 34, pp. 290-301
  • Ferdous, D., Dalai, A.K., Bej, S.K., Thring, R.W., Pyrolysis of lignins: Experimental and kinetics studies (2002) Energy and Fuels, 16, pp. 1405-1412
  • Fierro, V., Torné-Fernández, V., Montané, D., Celzard, A., Study of the decomposition of kraft lignin impregnated with orthophosphoric acid (2005) Thermochimica Acta, 433, pp. 142-148
  • Fierro, V., Torné-Fernández, V., Celzard, A., Montané, D., Influence of the demineralisation on the chemical activation of Kraft lignin with orthophosphoric acid (2007) Journal of Hazardous Materials, 149, pp. 126-133
  • González, J.D., Kim, M.R., Buonomo, E.L., Bonelli, P.R., Cukierman, A.L., Pyrolysis of biomass from sustainable energy plantations: Effect of mineral matter reduction on kinetics and charcoal pore structure. Energy Sources (2008) Part A: Recovery, Utilization, and Environmental Effects, 30 (9), pp. 809-817
  • Haykiri-Acma, H., Yaman, S., Kucukbayrak, S., Comparison of the thermal reactivities of isolated lignin and holocellulose during pyrolysis (2010) Fuel Processing Technology, , in press
  • Jakab, E., Faix, O., Till, F., Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry (1997) Journal of Analytical and Appllied Pyrolysis, 40-41, pp. 171-186
  • Jeguirim, M., Trouvé, G., Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis (2009) Bioresource Technology, 100, pp. 4026-4031
  • Jiang, G., Nowakowski, D.J., Bridgwater, A.V., A systematic study of the kinetics of lignin pyrolysis (2010) Thermochimica Acta, 498, pp. 61-66
  • Kim, M.R., Buonomo, E.L., Bonelli, P.R., Cukierman, A.L., The thermochemical processing of municipal solid wastes: Thermal events and kinetics of pyrolysis. Energy Sources. Part A: Recovery, Utilization (2010) and Environmental Effects, 32, pp. 1207-1214
  • Kumar, V., Iisa, K., Banerjee, S., Frederick, Jr.W.J., Effect of alkali metals on lignin pyrolysis and gasification (2008) AIChE Fall and Annual Meeting, , Conference Proceedings, Philadelphia, Pa, USA, Nov., 2008 (CD-ROM)
  • Li, Y., Sarkanen, S., Miscible blends of kraft lignin derivatives with low-Tg polymers (2005) Macromolecules, 38, pp. 2296-2306
  • Mancera, A., Fierro, V., Pizzi, A., Dumarçay, S., Gérardin, P., Velásquez, J., Quintana, G., Celzard, A., Physicochemical characterisation of sugar cane bagasse lignin oxidized by hydrogen peroxide (2010) Polymer Degradation and Stability, 95, pp. 470-476
  • McCarthy, J.L., Lignin: historical, biological, and materials perspectives (2000) American Chemical Society, pp. 2-100. , In: Glasser WG N.R. Schultz TP editors
  • Mohan, D., Pittman, Jr.C.U., Steele, P.H., Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin-a biosorbent (2006) Journal of Colloid and Interface Science, 297, pp. 489-504
  • Nowakowski, D.J., Bridgwater, A.V., Elliott, D.C., Meier, D., de Wild, P., Lignin fast pyrolysis: Results from an international collaboration (2010) Journal of Analytical and Applied Pyrolysis, 88, pp. 53-72
  • Ohmukai, Y., Hasegawa, I., Mae, K., Pyrolysis of the mixture of biomass and plastics in countercurrent flow reactor (2008) Part I: Experimental analysis and modeling of kinetics. Fuel, 87, pp. 3105-3111
  • Ramírez, F., Varela, G., Delgado, E., López-Dellamary, F., Zúñiga, V., González, V., Faix, O., Meier, D., Reactions, characterization and uptake of ammoxidized kraft lignin labeled with 15N (2007) Bioresource Technology, 98, pp. 1494-1500
  • Raveendran, K., Ganesh, A.K., Khilar, C., Influence of mineral matter on biomass pyrolysis characteristics (1995) Fuel, 74, pp. 1812-1822
  • Scott, D.S., Paterson, L., Piskorz, J., Radlein, D., Pretreatment of poplar wood for fast pyrolysis: Rate of cation removal (2000) Journal of Analytical and Applied Pyrolysis, 57, pp. 169-176
  • Sharypov, V.I., Marin, N., Beregovtsova, N.G., Baryshnikov, S.V., Kuznetsov, B.N., Cebolla, V.L., Weber, J.V., Co-pyrolysis of wood biomass and synthetic polymer mixtures. Part I: Influence of experimental conditions on the evolution of solids, liquids and gases (2002) Journal of Analytical and Applied Pyrolysis, 64, pp. 15-28
  • Sharypov, V.I., Beregovtsova, N.G., Kuznetsov, B.N., Baryshnikov, S.V., Marin, N., Weber, J.V., Light hydrocarbon liquids production by co-pyrolysis of polypropylene and hydrolytic lignin (2003) Chemistry for Sustainable Development, 11, pp. 427-434
  • Siddiqui, M.N., Redhwi, H.H., Pyrolysis of mixed plastics for the recovery of useful products (2009) Fuel Processing Technology, 90, pp. 545-552
  • Suhas, C.P.J.M., Ribeiro Carrott, M.M.L., Lignin -from natural adsorbent to activated carbon: a review (2007) Bioresource Technology, 98 (12), pp. 2301-2312
  • Velásquez, J.A., Ferrando, F., Salvadó, J., Effects of Kraft lignin addition in the production of binderless fiberboard from steam exploded Miscanthus sinensis (2003) Ind. Crops Prod., 18, pp. 17-23
  • Walker, J.C.F., Primary Wood Processing (2006) Principles and Practice, , Springer, Dordrecht, The Netherlands. 2nd Edition
  • Wang, S., Wang, K., Liu, Q., Gu, Y., Luo, Z., Cen, K., Fransson, T., Comparison of the pyrolysis behavior of lignins from different tree species (2009) Biotechnology Advances, 27, pp. 562-567
  • Wongsiriamnuay, T., Tippayawong, N., Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis (2010) Bioresource Technology, 101, pp. 5638-5644
  • Yang, H., Yan, R., Chen, F., Lee, D.H., Zheng, C.H., Characteristics of hemicellulose, cellulose and lignin pyrolysis (2007) Fuel, 86, pp. 1781-1788
  • Yang, X., Zeng, Y., Zhang, X., Influence of biopretreatment on the character of corn stover lignin as shown by thermogravimetric and chemical structure analyses (2010) Bioresources, 5 (1), pp. 488-498

Citas:

---------- APA ----------
Bonelli, P.R. & Cukierman, A.L. (2012) . Pyrolysis characteristics of different kinds of lignins. Lignin: Properties and Applications in Biotechnology and Bioenergy, 355-380.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816112_v_n_p355_Bonelli [ ]
---------- CHICAGO ----------
Bonelli, P.R., Cukierman, A.L. "Pyrolysis characteristics of different kinds of lignins" . Lignin: Properties and Applications in Biotechnology and Bioenergy (2012) : 355-380.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816112_v_n_p355_Bonelli [ ]
---------- MLA ----------
Bonelli, P.R., Cukierman, A.L. "Pyrolysis characteristics of different kinds of lignins" . Lignin: Properties and Applications in Biotechnology and Bioenergy, 2012, pp. 355-380.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816112_v_n_p355_Bonelli [ ]
---------- VANCOUVER ----------
Bonelli, P.R., Cukierman, A.L. Pyrolysis characteristics of different kinds of lignins. Lignin: Prop. and Appl. in Biotechnol. and Bioenergy. 2012:355-380.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816112_v_n_p355_Bonelli [ ]