Conferencia

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

The quality of information provided by ocean color imagery relies on the availability of an accurate atmospheric correction algorithm, which turns to be more complicated in highly turbid coastal regions, such as in the Río de la Plata River (RdP) (Argentina-Uruguay). In these waters, the usual black pixel assumption in the Near Infra-Red (NIR, 700-1000 nm) bands is often invalid due to high backscattering from suspended particulate matter (SPM) present in the water. In this work, an atmospheric correction scheme is presented to estimate water reflectance in the 865 nm NIR band. This scheme is based on shifting the black pixel assumption to the Short-Wave-Infra-Red (SWIR, 1000-3000 nm) bands and a Principal Component Analysis (PCA) decomposition of simulated atmosphere-interface reflectances. To estimate the latter component in the top of atmosphere (TOA) signal, the weight of each of these PCA eigenvectors is determined from the SWIR bands in a per-pixel-basis. The algorithm was theoretically tested from a set of simulated TOA reflectances performed considering atmospheric conditions and in-situ water reflectance data from RdP. Four schemes were analyzed using different sets of SWIR bands present in MODIS and SABIA-Mar (future Argentinian-Brazilian ocean color mission) sensors. These sets differ from each other in their correlation to the NIR and the validity of the black pixel assumption. Without considering instrument noise, the scheme with better performance is the one in which water reflectance is negligible in the SWIR bands considered: 1640 nm (SABIA-Mar/MODIS) and 2130 nm (MODIS). © 2016 IEEE.

Registro:

Documento: Conferencia
Título:SWIR-based atmospheric correction for Satellite Ocean Color using Principal Component Analysis decomposition over the la Plata River highly turbid waters
Autor:Gossn, J.I.; Frouin, R.; Dogliotti, A.I.; Grings, F.M.
Filiación:Quantitative Remote Sensing Group, Marine Division, Instituto de Astronomía y Física Del Espacio, CONICET-UBA, Pabellón IAFE, Ciudad Universitaria, Int. Güiraldes 2620, Buenos Aires, C1428ZAA, Argentina
Scripps Institution of Oceanography, University of California San Diego, 8622 Kennel Way, San Diego, CA 92037, United States
Palabras clave:Color; Infrared devices; Pixels; Radiometers; Reflection; Atmospheric conditions; Atmospheric correction algorithm; Atmospheric correction schemes; Atmospheric corrections; Quality of information; Satellite Ocean Color; Short wave infrared; Suspended particulate matters; Principal component analysis
Año:2016
DOI: http://dx.doi.org/10.1109/ARGENCON.2016.7585311
Título revista:2016 IEEE Biennial Congress of Argentina, ARGENCON 2016
Título revista abreviado:IEEE Bienn. Congr. Argent., ARGENCON
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97814673_v_n_p_Gossn

Referencias:

  • Gordon, H.R.Y., Wang, M., Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm (1994) Applied Optics, 33, pp. 443-452
  • Stumpf, R.P., Arnone, R.A., Gould, J.R.W., Martinolich, P.M., Ransibrahmanakul, V., A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters (2003) 2003: Algorithm Updates for the Fourth SeaWiFS Data Reprocessing. NASA Tech. Memo. 206892, National Aeronautics and Space Administration, Goddard Space Flight Center, , Patt, F.S., et al. , Greenbelt, MD
  • Shi, W., Wang, M., Detection of turbid waters and absorbing aerosols for the MODIS Ocean color data processing (2007) Remote Sensing of Environment, 110, pp. 149-161. , Sep
  • Wang, M., Shi, W., The NIR-SWIR combined atmospheric correction approach for MODIS Ocean color data processing (2007) Opt. Express, 15, pp. 15722-15733
  • Chen, J., Yin, S., Xiao, R., Xu, Q., Line, C., Deriving remote sensing reflectance from turbid case II waters using green-shortwave bands based model (2014) Advances in Space Research, 53, pp. 1229-1238
  • Shi, W., Wang, M., An assessment of the black ocean pixel assumption for MODIS SWIR bands (2009) Remote Sensing of Environment, 113, pp. 1587-1597
  • Dogliotti, A.I., Ruddick, K., Nechad, B., Lasta, C., Improving water reflectance retrieval from MODIS imagery in the highly turbid waters of la Plata river (2011) Proceedings of VI International Conference: Current Problems in Optics of Natural Waters (ONW 2011), p. 152. , Publishing House, Nauka of RAS, Saint-Petersburg, Russia. 6-10 September, 2011
  • Lenoble, J., Herman, M., Deuzé, J.L., Lafrance, B., Santer, R., Tanré, D., A successive order of scattering code for solving the vector equation of transfer in the earth's atmosphere with aerosols (2007) Journal of Quantitative Spectroscopy & Radiative Transfer, 107, pp. 479-507
  • MODIS Spectral Response Functions, , http://oceancolor.gsfc.nasa.gov/DOCS/RSR_tables.html
  • Bodhaine, B.A., Wood, N.B., Dutton, E.G., Slusser, J.R., On rayleigh optical depth calculations (1999) Journal of Atmospheric and Oceanic Technology, 16. , 21 January, 3 May 1999
  • A preliminary cloudless standard atmosphere for radiation computation (1986) WCP 112, WMO/TD, Report No 24, , World Climate Research Programme, Geneva, Switzerland, March
  • CEILAP Website: divisionlidar.com.ar/; AERONET Website: aeronet.gsfc.nasa.gov/; Dogliotti, A.I., Lutz, V.A., Segura, V., Estimation of primary production in the southern argentine continental shelf and shelf-break regions using field and remote sensing data (2014) Remote Sensing of Environment, 140, pp. 497-508. , Jan
  • Koepke, P., Effective reflectance of oceanic whitecaps (1984) Applied Optics, 23 (11), pp. 1816-1824. , http://dx.doi.org/10.1364/AO.23.001816
  • Frouin, R., Schwindling, M., Deschamps, P.-Y., Spectral reflectance of sea foam in the visible and near infrared: In-situ measurements and remote sensing applications (1996) J. Geophys. Res., 101, pp. 14361-14371
  • Nicolas, J.-M., Deschamps, P.-Y., Frouin, R., Spectral reflectance of oceanic whitecaps in the visible and near infrared: Aircraft measurements over open Ocean (2001) Geophys, Res. Lett., 28, pp. 4445-4448
  • Tanre, D., Deschamps, Y.H.P., De Leffe, A., Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties (1979) Applied Optics, 18 (21), pp. 3587-3594A4 -

Citas:

---------- APA ----------
Gossn, J.I., Frouin, R., Dogliotti, A.I. & Grings, F.M. (2016) . SWIR-based atmospheric correction for Satellite Ocean Color using Principal Component Analysis decomposition over the la Plata River highly turbid waters. 2016 IEEE Biennial Congress of Argentina, ARGENCON 2016.
http://dx.doi.org/10.1109/ARGENCON.2016.7585311
---------- CHICAGO ----------
Gossn, J.I., Frouin, R., Dogliotti, A.I., Grings, F.M. "SWIR-based atmospheric correction for Satellite Ocean Color using Principal Component Analysis decomposition over the la Plata River highly turbid waters" . 2016 IEEE Biennial Congress of Argentina, ARGENCON 2016 (2016).
http://dx.doi.org/10.1109/ARGENCON.2016.7585311
---------- MLA ----------
Gossn, J.I., Frouin, R., Dogliotti, A.I., Grings, F.M. "SWIR-based atmospheric correction for Satellite Ocean Color using Principal Component Analysis decomposition over the la Plata River highly turbid waters" . 2016 IEEE Biennial Congress of Argentina, ARGENCON 2016, 2016.
http://dx.doi.org/10.1109/ARGENCON.2016.7585311
---------- VANCOUVER ----------
Gossn, J.I., Frouin, R., Dogliotti, A.I., Grings, F.M. SWIR-based atmospheric correction for Satellite Ocean Color using Principal Component Analysis decomposition over the la Plata River highly turbid waters. IEEE Bienn. Congr. Argent., ARGENCON. 2016.
http://dx.doi.org/10.1109/ARGENCON.2016.7585311