Abstract:
A Gabor space is a space generated by a discrete set of time-frequency shifted copies of a single window function. Starting from the question of whether a Gabor space contains additional time-frequency shifts of the window function we establish a new Balian-Low type result. This result extends (for example) the well established Amalgam Balian-Low Theorem in the one dimensional case. The Gabor spaces considered in this note are generated by symplectic lattices of rational density.1 © 2015 IEEE.
Registro:
| Documento: |
Conferencia
|
| Título: | An Amalgam Balian-Low Theorem for symplectic lattices of rational density |
| Autor: | Cabrelli, C.; Molter, U.; Pfander, G.E. |
| Filiación: | Departament de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina DVIAS/CONICET, Consejo Nacional de Investigaciones, Cientiflcas y Técnicas, Argentina Mathematics Jacobs University, Bremen, 28759, Germany Mathematisch Geographische Fakultät, KU Eichstätt, Germany
|
| Palabras clave: | Balian-Low theorem; Discrete sets; Single windows; Symplectic; Time frequency; Time-frequency shift; Window functions |
| Año: | 2015
|
| Página de inicio: | 134
|
| Página de fin: | 138
|
| DOI: |
http://dx.doi.org/10.1109/SAMPTA.2015.7148866 |
| Título revista: | 11th International Conference on Sampling Theory and Applications, SampTA 2015
|
| Título revista abreviado: | Int. Conf. Sampl. Theory Appl., SampTA
|
| Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97814673_v_n_p134_Cabrelli |
Referencias:
- Aldroubi, A., Cabrelli, C., Heil, C., Kornelson, K., Molter, U., Invariance of a shift-invariant space (2010) J. Fourier Anal. Appl, 16 (1), pp. 60-75
- Aldroubi, A., Krishtal, I., Tessera, R., Wang, H., Principal shift-invariant spaces with extra invariance nearest to observed data (2012) Collect. Math, 63 (3), pp. 393-401. , MR 2957978
- Aldroubi, A., Sun, Q., Wang, H., Uncertainty principles and balian-low type theorems in principal shift-invariant spaces (2011) Appl. Comput. Harmon. Anal, 30 (3), pp. 337-347. , MR 2784568 (2012e:42068)
- Ascensi, G., Feichtinger, H.G., Kaiblinger, N., Dilation of the Weyl symbol and Balian-Low theorem (2014) Trans. Amer. Math. Soc, 366, pp. 3865-3880
- Balian, R., Un principe d'incertitude fort en théorie du signal ou en mécanique quantique (1981) C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre, 292 (20), pp. 1357-1362. , MR 644367 (83a:94009)
- Benedetto, J.J., Czaja, W., Maltsev, A.Y., The BalianLow theorem for the symplectic form on R2d (2003) Journal of Mathematical Physics, 44 (4), pp. 1735-1750
- Benedetto, J.J., Heil, C., Walnut, D.F., Uncertainty principles for time-frequency operators Continuous and discrete Fourier transforms, extension problems and Wiener-Hopf equations Oper. Theory Adv. Appl, 58, pp. 1-25. , Birkhäuser, Basel, 1992MR 1183741 (94a:42041)
- Benedetto, J.J., Heil, C., Walnut, D.F., Differentiation and the Balian-Low theorem (1995) J. Fourier Anal. Appl, 1 (4), pp. 355-402. , MR 1350699 (96f:42002)
- Benedetto, J.J., Heil, C., Walnut, D.F., Gabor systems and the Balian-Low theorem Gabor analysis and algorithms (1998) Appl. Numer. Harmon. Anal, pp. 85-122. , Birkhäuser Boston, Boston, MA, MR 1601111 (98j:42016)
- Benedetto, J.J., Walnut, D.F., Gabor frames for L2 and related spaces, Wavelets: Mathematics and applications (1994) Stud. Adv. Math., CRC, Boca Raton, FL, pp. 97-162. , MR 1247515 (94i:42040)
- Cabrelli, C., Molter, U., Pfander, G.E., Time-frequency Shift Invariance and the Amalgam Balian-Low Theorem, , preprint
- Daubechies, I., The wavelet transform time frequency localization and signal analysis (1990) IEEE, Transactions on Information Theory, 36 (5), pp. 961-1005
- Daubechies, I., Landau, H.J., Landau, Z., Gabor timefrequency lattices and the Wexler-Raz identity (1995) J. Fourier Anal. Appl, 1 (4), pp. 437-478. , MR 1350701 (96i:42021)
- Feichtinger, H.G., On a new segal algebra (1981) Monatsh. Math, 92, pp. 269-289
- Feichtinger, H.G., Gröchenig, K., Gabor frames and timefrequency analysis of distributions (1997) J. Funct. Anal, 146 (2), pp. 464-495. , MR 1452000 (98k:42041)
- Feichtinger, H.G., Zimmermann, G., A Banach space of test functions for Gabor analysis (1998) Gabor Analysis and Algorithms: Theory and Applications, pp. 123-170. , (H.G. Feichtinger and T. Strohmer, eds.), Birkhäuser, Boston, MA
- Gabardo, J.-P., Han, D., Balian-Low phenomenon for subspace Gabor frames (2004) J. Math. Phys, 45 (8), pp. 3362-3378. , MR 2077516 (2005e:42093)
- Gröchenig, K., Han, D., Heil, C., Kutyniok, G., The Balian-Low theorem for symplectic lattices in higher dimensions (2002) Appl. Comput. Harmon. Anal, 13 (2), pp. 169-176. , MR 1942751 (2003i:42041)
- Gröchenig, K., Foundations of time-frequency analysis (2001) Applied and Numerical Harmonic Analysis, , Birkhäuser
- Heil, C., History and evolution of the density theorem for Gabor frames (2007) J. Four. Anal. Appl, 12, pp. 113-166
- Heil, C., Powell, A.M., Gabor Schauder Bases and the Balian-Low Theorem (2006) J. Math. Physics, 47
- Janssen, A.J.E.M., A decay result for certain windows generating orthogonal Gabor bases (2008) J. Fourier Anal. Appl, 14 (1), pp. 1-15. , MR 2379750 (2009a:42047)
- Kozek, W., Pfander, G.E., Identification of operators with bandlimited symbols (2006) SIAM J. Math. Anal, 37 (3), pp. 867-888
- Kisilev, P., Zibulevsky, M., Zeevi, Y.Y., A multiscale framework for blind separation of linearly mixed signals (2004) J. Mach. Learn. Res, 4 (78), pp. 1339-1363. , MR 2103632
- Low, F., Complete sets of wave packages (1985) A Passion for Physics- Essays in Honor of Geoffrey Chew, pp. 17-22. , (et al. C. DeTar, ed.), World Scientific
- Nitzan, S., Olsen, J.-F., A quantitative balian-low theorem (2013) J. Four. Anal. Appl, 19 (5), pp. 1078-1092
- Pfander, G.E., Sampling of operators (2013) J. Four. Anal. Appl, 19 (3), p. 612
- Pfander, G.E., Rashkov, P., Remarks on multivariate Gaussian Gabor frames (2013) Monatshefte Fr Mathematik, 172 (2), pp. 179-187
- Tessera, R., Wang, H., Uncertainty principles in finitely generated shift-invariant spaces with additional invariance (2014) Journal of Mathematical Analysis and Applications, 410, pp. 134-143
- Zibulski, M., Zeevi, Y.Y., Oversampling in the gabor scheme (1993) IEEE Trans. on Signal Processing, 41 (8), pp. 2679-2687
- Zibulski, M., Zeevi, Y.Y., Analysis of multiwindow gabor-type schemes by frame methods (1997) Appl. Comp. Harmonic Analysis, 4, pp. 188-221A4 -
Citas:
---------- APA ----------
Cabrelli, C., Molter, U. & Pfander, G.E.
(2015)
. An Amalgam Balian-Low Theorem for symplectic lattices of rational density. 11th International Conference on Sampling Theory and Applications, SampTA 2015, 134-138.
http://dx.doi.org/10.1109/SAMPTA.2015.7148866---------- CHICAGO ----------
Cabrelli, C., Molter, U., Pfander, G.E.
"An Amalgam Balian-Low Theorem for symplectic lattices of rational density"
. 11th International Conference on Sampling Theory and Applications, SampTA 2015
(2015) : 134-138.
http://dx.doi.org/10.1109/SAMPTA.2015.7148866---------- MLA ----------
Cabrelli, C., Molter, U., Pfander, G.E.
"An Amalgam Balian-Low Theorem for symplectic lattices of rational density"
. 11th International Conference on Sampling Theory and Applications, SampTA 2015, 2015, pp. 134-138.
http://dx.doi.org/10.1109/SAMPTA.2015.7148866---------- VANCOUVER ----------
Cabrelli, C., Molter, U., Pfander, G.E. An Amalgam Balian-Low Theorem for symplectic lattices of rational density. Int. Conf. Sampl. Theory Appl., SampTA. 2015:134-138.
http://dx.doi.org/10.1109/SAMPTA.2015.7148866