Conferencia

Cabrelli, C.; Molter, U.; Pfander, G.E. "An Amalgam Balian-Low Theorem for symplectic lattices of rational density" (2015) 11th International Conference on Sampling Theory and Applications, SampTA 2015:134-138
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

A Gabor space is a space generated by a discrete set of time-frequency shifted copies of a single window function. Starting from the question of whether a Gabor space contains additional time-frequency shifts of the window function we establish a new Balian-Low type result. This result extends (for example) the well established Amalgam Balian-Low Theorem in the one dimensional case. The Gabor spaces considered in this note are generated by symplectic lattices of rational density.1 © 2015 IEEE.

Registro:

Documento: Conferencia
Título:An Amalgam Balian-Low Theorem for symplectic lattices of rational density
Autor:Cabrelli, C.; Molter, U.; Pfander, G.E.
Filiación:Departament de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina
DVIAS/CONICET, Consejo Nacional de Investigaciones, Cientiflcas y Técnicas, Argentina
Mathematics Jacobs University, Bremen, 28759, Germany
Mathematisch Geographische Fakultät, KU Eichstätt, Germany
Palabras clave:Balian-Low theorem; Discrete sets; Single windows; Symplectic; Time frequency; Time-frequency shift; Window functions
Año:2015
Página de inicio:134
Página de fin:138
DOI: http://dx.doi.org/10.1109/SAMPTA.2015.7148866
Título revista:11th International Conference on Sampling Theory and Applications, SampTA 2015
Título revista abreviado:Int. Conf. Sampl. Theory Appl., SampTA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97814673_v_n_p134_Cabrelli

Referencias:

  • Aldroubi, A., Cabrelli, C., Heil, C., Kornelson, K., Molter, U., Invariance of a shift-invariant space (2010) J. Fourier Anal. Appl, 16 (1), pp. 60-75
  • Aldroubi, A., Krishtal, I., Tessera, R., Wang, H., Principal shift-invariant spaces with extra invariance nearest to observed data (2012) Collect. Math, 63 (3), pp. 393-401. , MR 2957978
  • Aldroubi, A., Sun, Q., Wang, H., Uncertainty principles and balian-low type theorems in principal shift-invariant spaces (2011) Appl. Comput. Harmon. Anal, 30 (3), pp. 337-347. , MR 2784568 (2012e:42068)
  • Ascensi, G., Feichtinger, H.G., Kaiblinger, N., Dilation of the Weyl symbol and Balian-Low theorem (2014) Trans. Amer. Math. Soc, 366, pp. 3865-3880
  • Balian, R., Un principe d'incertitude fort en théorie du signal ou en mécanique quantique (1981) C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre, 292 (20), pp. 1357-1362. , MR 644367 (83a:94009)
  • Benedetto, J.J., Czaja, W., Maltsev, A.Y., The BalianLow theorem for the symplectic form on R2d (2003) Journal of Mathematical Physics, 44 (4), pp. 1735-1750
  • Benedetto, J.J., Heil, C., Walnut, D.F., Uncertainty principles for time-frequency operators Continuous and discrete Fourier transforms, extension problems and Wiener-Hopf equations Oper. Theory Adv. Appl, 58, pp. 1-25. , Birkhäuser, Basel, 1992MR 1183741 (94a:42041)
  • Benedetto, J.J., Heil, C., Walnut, D.F., Differentiation and the Balian-Low theorem (1995) J. Fourier Anal. Appl, 1 (4), pp. 355-402. , MR 1350699 (96f:42002)
  • Benedetto, J.J., Heil, C., Walnut, D.F., Gabor systems and the Balian-Low theorem Gabor analysis and algorithms (1998) Appl. Numer. Harmon. Anal, pp. 85-122. , Birkhäuser Boston, Boston, MA, MR 1601111 (98j:42016)
  • Benedetto, J.J., Walnut, D.F., Gabor frames for L2 and related spaces, Wavelets: Mathematics and applications (1994) Stud. Adv. Math., CRC, Boca Raton, FL, pp. 97-162. , MR 1247515 (94i:42040)
  • Cabrelli, C., Molter, U., Pfander, G.E., Time-frequency Shift Invariance and the Amalgam Balian-Low Theorem, , preprint
  • Daubechies, I., The wavelet transform time frequency localization and signal analysis (1990) IEEE, Transactions on Information Theory, 36 (5), pp. 961-1005
  • Daubechies, I., Landau, H.J., Landau, Z., Gabor timefrequency lattices and the Wexler-Raz identity (1995) J. Fourier Anal. Appl, 1 (4), pp. 437-478. , MR 1350701 (96i:42021)
  • Feichtinger, H.G., On a new segal algebra (1981) Monatsh. Math, 92, pp. 269-289
  • Feichtinger, H.G., Gröchenig, K., Gabor frames and timefrequency analysis of distributions (1997) J. Funct. Anal, 146 (2), pp. 464-495. , MR 1452000 (98k:42041)
  • Feichtinger, H.G., Zimmermann, G., A Banach space of test functions for Gabor analysis (1998) Gabor Analysis and Algorithms: Theory and Applications, pp. 123-170. , (H.G. Feichtinger and T. Strohmer, eds.), Birkhäuser, Boston, MA
  • Gabardo, J.-P., Han, D., Balian-Low phenomenon for subspace Gabor frames (2004) J. Math. Phys, 45 (8), pp. 3362-3378. , MR 2077516 (2005e:42093)
  • Gröchenig, K., Han, D., Heil, C., Kutyniok, G., The Balian-Low theorem for symplectic lattices in higher dimensions (2002) Appl. Comput. Harmon. Anal, 13 (2), pp. 169-176. , MR 1942751 (2003i:42041)
  • Gröchenig, K., Foundations of time-frequency analysis (2001) Applied and Numerical Harmonic Analysis, , Birkhäuser
  • Heil, C., History and evolution of the density theorem for Gabor frames (2007) J. Four. Anal. Appl, 12, pp. 113-166
  • Heil, C., Powell, A.M., Gabor Schauder Bases and the Balian-Low Theorem (2006) J. Math. Physics, 47
  • Janssen, A.J.E.M., A decay result for certain windows generating orthogonal Gabor bases (2008) J. Fourier Anal. Appl, 14 (1), pp. 1-15. , MR 2379750 (2009a:42047)
  • Kozek, W., Pfander, G.E., Identification of operators with bandlimited symbols (2006) SIAM J. Math. Anal, 37 (3), pp. 867-888
  • Kisilev, P., Zibulevsky, M., Zeevi, Y.Y., A multiscale framework for blind separation of linearly mixed signals (2004) J. Mach. Learn. Res, 4 (78), pp. 1339-1363. , MR 2103632
  • Low, F., Complete sets of wave packages (1985) A Passion for Physics- Essays in Honor of Geoffrey Chew, pp. 17-22. , (et al. C. DeTar, ed.), World Scientific
  • Nitzan, S., Olsen, J.-F., A quantitative balian-low theorem (2013) J. Four. Anal. Appl, 19 (5), pp. 1078-1092
  • Pfander, G.E., Sampling of operators (2013) J. Four. Anal. Appl, 19 (3), p. 612
  • Pfander, G.E., Rashkov, P., Remarks on multivariate Gaussian Gabor frames (2013) Monatshefte Fr Mathematik, 172 (2), pp. 179-187
  • Tessera, R., Wang, H., Uncertainty principles in finitely generated shift-invariant spaces with additional invariance (2014) Journal of Mathematical Analysis and Applications, 410, pp. 134-143
  • Zibulski, M., Zeevi, Y.Y., Oversampling in the gabor scheme (1993) IEEE Trans. on Signal Processing, 41 (8), pp. 2679-2687
  • Zibulski, M., Zeevi, Y.Y., Analysis of multiwindow gabor-type schemes by frame methods (1997) Appl. Comp. Harmonic Analysis, 4, pp. 188-221A4 -

Citas:

---------- APA ----------
Cabrelli, C., Molter, U. & Pfander, G.E. (2015) . An Amalgam Balian-Low Theorem for symplectic lattices of rational density. 11th International Conference on Sampling Theory and Applications, SampTA 2015, 134-138.
http://dx.doi.org/10.1109/SAMPTA.2015.7148866
---------- CHICAGO ----------
Cabrelli, C., Molter, U., Pfander, G.E. "An Amalgam Balian-Low Theorem for symplectic lattices of rational density" . 11th International Conference on Sampling Theory and Applications, SampTA 2015 (2015) : 134-138.
http://dx.doi.org/10.1109/SAMPTA.2015.7148866
---------- MLA ----------
Cabrelli, C., Molter, U., Pfander, G.E. "An Amalgam Balian-Low Theorem for symplectic lattices of rational density" . 11th International Conference on Sampling Theory and Applications, SampTA 2015, 2015, pp. 134-138.
http://dx.doi.org/10.1109/SAMPTA.2015.7148866
---------- VANCOUVER ----------
Cabrelli, C., Molter, U., Pfander, G.E. An Amalgam Balian-Low Theorem for symplectic lattices of rational density. Int. Conf. Sampl. Theory Appl., SampTA. 2015:134-138.
http://dx.doi.org/10.1109/SAMPTA.2015.7148866