Parte de libro

Perullini, M.; Aldabe Bilmes, S.A.; Jobbágy, M. "Cerium oxide nanoparticles: Structure, applications, reactivity, and eco-toxicology" (2013) Nanomaterials: A Danger or a Promise? A Chemical and Biological Perspective. 9781447142133:307-333
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

In this chapter, the physical, chemical, and ecotoxicological features of nanometric cerium oxide will be discussed on the basis of the recent research. In contrast with other oxides such as SiO2, ZnO, ZrO2, or TiO2 with relevant industrial applications, ceria presents a unique redox chemistry that expanded its application to fields that take advantage of its chemical reactivity, as heterogeneous catalysis and detoxification of gaseous exhausts. In the past, several studies were strictly focused on the exploration of its eventual damage to environment and human health. CeO2, as other rare earths oxides, is basically a low toxicity substance[1] and nowadays there is vast and increasing evidence pointing to its potential role as protective compound in terms of human health. The aim of this chapter is to offer a wide scope of description of the intrinsic physicochemical behavior of this unique compound, with deep emphasis in the inherent challenge that represents a definitive understanding of its surface chemistry. The apparent contradiction between toxicity and health benefits will be discussed according to the present evidence and the intrinsic limitations of these complex studies. © 2013 Springer-Verlag London. All rights are reserved.

Registro:

Documento: Parte de libro
Título:Cerium oxide nanoparticles: Structure, applications, reactivity, and eco-toxicology
Autor:Perullini, M.; Aldabe Bilmes, S.A.; Jobbágy, M.
Filiación:Laboratorio de Superficies y Materiales Funcionales INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, Buenos Aires, Argentina
Palabras clave:Catalysis; Cerium; Cerium compounds; Detoxification; Health; Oxides; Surface chemistry; Cerium oxide nanoparticle; Eco-toxicology; Ecotoxicological; Health benefits; ITS applications; Physicochemical behaviors; Recent researches; Redox chemistry; Toxicity
Año:2013
Volumen:9781447142133
Página de inicio:307
Página de fin:333
DOI: http://dx.doi.org/10.1007/978-1-4471-4213-3_12
Título revista:Nanomaterials: A Danger or a Promise? A Chemical and Biological Perspective
Título revista abreviado:Nanomaterials: A Danger or a Promise? A Chem. and Biol. Perspect.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97814471_v9781447142133_n_p307_Perullini

Referencias:

  • Lambert, C.E., Barnum, E.C., Shapiro, R., (1993) J Am Coll Toxicol, 12, p. 617
  • J. 34-394; Adachi, G., Imanaka, N., (1998) Chem Rev, 98, pp. 1479-1514
  • Zinkevich, M., Djurovic, D., Aldinger, F., (2006) Solid State Ionics, 177, pp. 989-1001
  • Ray, S.P., Cox, D.E., (1975) J Solid State Chem, 15, pp. 333-343
  • Ray, S.P., Nowick, A.S., Cox, D.E., (1975) J Solid State Chem, 15, pp. 344-351
  • Knappe, P., Eyring, L., (1985) J Solid State Chem, 58, pp. 312-324
  • Touzelin, B., (1981) J Nucl Mater, 101, pp. 92-99
  • Kummerle, E.A., Guthoff, F., Schweika, W., Heger, G., (2000) J Solid State Chem, 153, pp. 218-230
  • Hull, S., Norberg, S.T., Ahmed, I., Eriksson, S.G., Marrocchelli, D., Madden, P.A., (2009) J Solid State Chem, 182, pp. 2815-2821
  • Shannon, R.D., (1976) Acta Crystallographica Section A, 32, pp. 751-767
  • Shannon, R.D., (1976) Acta Crystallogr, 32, pp. 751-767
  • Kim, D.-J., (1989) J Am Ceram Soc, 72, pp. 1415-1421
  • Tsunekawa, S., Sivamohan, R., Ito, S., Kasuya, A., Fukuda, T., (1999) Nanostruct Mater, 11, pp. 141-147
  • Zhang, F., Chan, S.W., Spanier, J.E., Apak, E., Jin, Q., Robinson, R.D., Herman, I.P., (2002) Appl Phys Lett, 80, pp. 127-129
  • Deshpande, S., Patil, S., Kuchibhatla, S.V., Seal, S., (2005) Appl Phys Lett, 87, pp. 1-3
  • Wu, L.J., Wiesmann, H.J., Moodenbaugh, A.R., Klie, R.F., Zhu, Y.M., Welch, D.O., Suenaga, M., (2004) Phys Rev B, 69
  • Tsunekawa, S., Sivamohan, R., Ohsuna, T., Kasuya, A., Takahashi, H., (1999) K. Tohji, Mater Sci Forum, pp. 439-445
  • Tsunekawa, S., Sahara, R., Kawazoe, Y., Ishikawa, K., (1999) Appl Surf Sci, 152, pp. 53-56
  • Tsunekawa, S., Ito, S., Kawazoe, Y., (2004) Appl Phys Lett, 85, pp. 3845-3847
  • Sayle, T.X.T., Parker, S.C., Catlow, C.R.A., (1994) Surf Sci, 316, pp. 329-336
  • Cordatos, H., Ford, D., Gorte, R.J., (1996) J Phys Chem, 100, pp. 18128-18132
  • Mullins, D.R., Overbury, S.H., Huntley, D.R., (1998) Surf Sci, 409, pp. 307-319
  • Baranchikov, A.E., Polezhaeva, O.S., Ivanov, V.K., Tretyakov, Y.D., (2010) Cryst Eng Comm, 12, pp. 3531-3533
  • Trovarelli, A., De Leitenburg, C., Boaro, M., Dolcetti, G., (1999) Catal Today, 50, pp. 353-367
  • Kaspar, J., Fornasiero, P., Graziani, M., (1999) Catal Today, 50, pp. 285-298
  • Lahaye, J., Boehm, S., Chambrion, P., Ehrburger, P., (1996) Combust Flame, 104, pp. 199-207
  • Matatov-Meytal, Y.I., Sheintuch, M., (1998) Ind Eng Chem Res, 37, pp. 309-326
  • Liu, W., Flytzani-Stephanopoulos, M., (1995) J Catal, 153, pp. 317-332
  • Steele, B.C.H., (2000) Solid State Ionics, 129, pp. 95-110
  • Putna, E.S., Stubenrauch, J., Vohs, J.M., Gorte, R.J., (1995) Langmuir, 11, pp. 4832-4837
  • Trovarelli, A., (1996) Catal Rev-Sci Eng, 38, pp. 439-520
  • Zhou, K.B., Wang, X., Sun, X.M., Peng, Q., Li, Y.D., (2005) J Catal, 229, pp. 206-212
  • Mai, H.X., Sun, L.D., Zhang, Y.W., Si, R., Feng, W., Zhang, H.P., Liu, H.C., Yan, C.H., (2005) J Phys Chem B, 109, pp. 24380-24385
  • Zhang, J., Kumagai, H., Yamamura, K., Ohara, S., Takami, S., Morikawa, A., Shinjoh, H., Suda, A., (2011) Nano Lett, 11, pp. 361-364
  • Wang, D., Kang, Y., Doan-Nguyen, V., Chen, J., Kuengas, R., Wieder, N.L., Bakhmutsky, K., Murray, C.B., (2011) Angewandte Chemie-Int Edition, 50, pp. 4378-4381
  • Li, M., Liu, Z., Hu, Y., Shi, Z., Li, H., (2007) Coll Surf A-Physicochem Eng Aspects, 301, pp. 153-157
  • Gopalan, S., Singhal, S.C., (2000) Scripta Mater, 42, pp. 993-996
  • Tsuzuki, T., McCormick, P.G., (2001) J Am Ceram Soc, 84, pp. 1453-1458
  • Lim, G., Lee, J.H., Kim, J., Lee, H.W., Hyun, S.H., (2004) Designing, Processing and Properties of Advanced Engineering Materials, Pts, 1-2, pp. 1105-1108
  • Li, Y.X., Zhou, X.Z., Wang, Y., You, X.Z., (2004) Mater Lett, 58, pp. 245-249
  • Hadi, A., Yaacob, I.I., Gaik, C.S., (2006) Functional Materials and Devices, pp. 105-110
  • Hadi, A., Yaacob, I.I., Gaik, C.S., (2006) Functional Materials and Devices, pp. 252-256
  • Hadi, A., Yaacob, I.I., (2007) Mater Lett, 61, pp. 93-96
  • Mokkelbost, T., Kaus, I., Grande, T., Einarsrud, M.A., (2004) Chem Mater, 16, pp. 5489-5494
  • Jobbagy, M., Sorbello, C., Sileo, E.E., (2009) J Phys Chem C, 113, pp. 10853-10857
  • Jobbagy, M., Marino, F., Schobrod, B., Baronetti, G., Laborde, M., (2006) Chem Mater, 18, pp. 1945-1950
  • Wang, H., Zhu, J.J., Zhu, J.M., Liao, X.H., Xu, S., Ding, T., Chen, H.Y., (2002) Phys Chem Chem Phys, 4, pp. 3794-3799
  • Esch, F., Fabris, S., Zhou, L., Montini, T., Africh, C., Fornasiero, P., Comelli, G., Rosei, R., (2005) Science, 309, pp. 752-755
  • Migani, A., Vayssilov, G.N., Bromley, S.T., Illas, F., Neyman, K.M., (2010) Chem Commun, 46, pp. 5936-5938
  • Migani, A., Vayssilov, G.N., Bromley, S.T., Illas, F., Neyman, K.M., (2010) J Mater Chem, 20, pp. 10535-10546
  • Arenas, M.A., Bethencourt, M., Botana, F.J., De Damborenea, J., Marcos, M., (2001) Corros Sci, 43, pp. 157-170
  • Arenas, M.A., Conde, A., De Damborenea, J.J., (2002) Corros Sci, 44, pp. 511-520
  • Creus, J., Brezault, F., Rebere, C., Gadouleau, M., (2006) Surf Coat Technol, 200, pp. 4636-4645
  • Ferreira, M.G.S., Duarte, R.G., Montemor, M.F., Simãles, A.M.P., (2004) Electrochimica Acta, 49, pp. 2927-2935
  • Hinton, B.R.W., Wilson, L., (1989) Corros Sci, 29 (967-975), pp. 977-985
  • Lu, Y.C., Ives, M.B., (1993) Corros Sci, 34 (1773-1781), pp. 1783-1785
  • Lu, Y.C., Ives, M.B., (1995) Corros Sci, 37, pp. 145-155
  • Mitra, S.K., Roy, S.K., Bose, S.K., (1993) Oxid Metals, 39, pp. 221-229
  • Montemor, M.F., Simãles, A.M., Ferreira, M.G.S., (2001) Prog Org Coat, 43, pp. 274-281
  • Montemor, M.F., Simãles, A.M., Ferreira, M.G.S., (2002) Prog Org Coat, 44, pp. 111-120
  • Montemor, M.F., Trabelsi, W., Zheludevich, M., Ferreira, M.G.S., (2006) Prog Org Coat, 57, pp. 67-77
  • Nazeri, A., Trzaskoma-Paulette, P.P., Bauer, D., (1997) J Sol-Gel Sci Technol, 10, pp. 317-331
  • Seal, S., Bose, S.K., Roy, S.K., (1994) Oxid Metals, 41, pp. 139-178
  • Wang, C., Jiang, F., Wang, F., (2004) Corros Sci, 46, pp. 75-89
  • Wang, H., Akid, R., (2008) Corros Sci, 50, pp. 1142-1148
  • Bethencourt, M., Botana, F.J., Calvino, J.J., Marcos, M., Rodriguez-Chacon, M.A., (1998) Corros Sci, 40, pp. 1803-1819
  • Patil, S., Kuiry, S.C., Seal, S., Vanfleet, R., (2002) J Nanoparticle Res, 4, pp. 433-438
  • Tsukuma, K., (1986) Am Ceram Soc Bull, 65, pp. 1386-1389
  • Tsukuma, K., Shimada, M., (1985) J Materials Science, 20, pp. 1178-1184
  • Masui, T., Fujiwara, K., Machida, K., Adachi, G., Sakata, T., Mori, H., (1997) Chem Mater, 9, pp. 2197-2204
  • Tsunekawa, S., Fukuda, T., Kasuya, A., (2000) J Appl Phys, 87, pp. 1318-1321
  • Nie, J.C., Hua, Z.Y., Dou, R.F., Tu, Q.Y., (2008) J Appl Physs, 103
  • Zhang, F., Jin, Q., Chan, S.W., (2004) J Appl Phys, 95, pp. 4319-4326
  • Yin, L.X., Wang, Y.Q., Pang, G.S., Koltypin, Y., Gedanken, A., (2002) J Coll Interface Sci, 246, pp. 78-84
  • Zhang, Y.W., Si, R., Liao, C.S., Yan, C.H., Xiao, C.X., Kou, Y., (2003) J Phys Chem B, 107, pp. 10159-10167
  • Patsalas, P., Logothetidis, S., Sygellou, L., Kennou, S., (2003) Phys Rev B Condens Matter Mater Phys, 68, pp. 351041-3510413
  • Corma, A., Atienzar, P., Garcã-A, H., Chane-Ching, J.Y., (2004) Nat Mater, 3, pp. 394-397
  • Xie, Y.B., Yuan, C.W., (2003) Appl Catal B-Environ, 46, pp. 251-259
  • Li, F.B., Li, X.Z., Hou, M.F., Cheah, K.W., Choy, W.C.H., (2005) Appl Catal A-Gen, 285, pp. 181-189
  • Coronado, J.M., Maira, A.J., Martinez-Arias, A., Conesa, J.C., Soria, J., (2002) J Photochem Photobiol A-Chem, 150, pp. 213-221
  • Bamwenda, G.R., Arakawa, H., (2000) J Mol Catal A-Chem, 161, pp. 105-113
  • Xiao, J.R., Peng, T.Y., Li, R., Peng, Z.H., Yan, C.H., (2006) J Solid State Chem, 179, pp. 1161-1170
  • Ji, P., Zhang, J., Chen, F., Anpo, M., (2009) Appl Catal B-Environ, 85, pp. 148-154
  • Hernandez-Alonso, M.D., Hungria, A.B., Martinez-Arias, A., Fernandez-Garcia, M., Coronado, J.M., Conesa, J.C., Soria, J., (2004) Appl Catal B-Environ, 50, pp. 167-175
  • Long, T.C., Tajuba, J., Sama, P., Saleh, N., Swartz, C., Parker, J., Hester, S., Veronesi, B., (2007) Environ Health Perspect, 115, pp. 1631-1637
  • Kang, S.J., Kim, B.M., Lee, Y.J., Chung, H.W., (2008) Environ Mol Mutagen, 49, pp. 399-405
  • Wang, J.J., Sanderson, B.J.S., Wang, H., (2007) Mutat Res-Genet Toxicol Environ Mutagen, 628, pp. 99-106
  • Linsebigler, A.L., Lu, G., Yates, J.T., Jr., (1995) Chem. Rev, 95, pp. 735-758
  • Herrmann, J.M., (1999) Catalysis Today, 53, pp. 115-129
  • Serpone, N., Dondi, D., Albini, A., (2007) Inorganica Chimica Acta, 360, pp. 794-802
  • Brezova, V., Gabcova, S., Dvoranova, D., Stako, A., (2005) J Photochem Photobiol B: Biol, 79, pp. 121-134
  • Dunford, R., Salinaro, A., Cai, L., Serpone, N., Horikoshi, S., Hidaka, H., Knowland, J., (1997) FEBS Letters, 418, pp. 87-90
  • Uchino, T., Tokunaga, H., Ando, M., Utsumi, H., (2002) Toxicol in Vitro, 16, pp. 629-635
  • Sayes, C.M., Wahi, R., Kurian, P.A., Liu, Y., West, J.L., Ausman, K.D., Warheit, D.B., Colvin, V.L., (2006) Toxicol Sci, 92, pp. 174-185
  • Hidaka, H., Kobayashi, H., Koike, T., Sato, T., Serpone, N., (2006) J Oleo Science, 55, pp. 249-261
  • Wamer, W.G., Yin, J.J., Wei, R.R., (1997) Free Radic Biol Med, 23, pp. 851-858
  • Yabe, S., Sato, T., (2003) J Solid State Chem, 171, pp. 7-11
  • Li, R.X., Yabe, S., Yamashita, M., Momose, S., Yoshida, S., Yin, S., Sato, T., (2002) Mater Chem Phys, 75, pp. 39-44
  • Truffault, L., Ta, M.-T., Devers, T., Konstantinov, K., Harel, V., Simmonard, C., Andreazza, C., Blondeau, J.-P., (2010) Mater Res Bull, 45, pp. 527-535
  • Tarnuzzer, R.W., Colon, J., Patil, S., Seal, S., (2005) Nano Lett, 5, pp. 2573-2577
  • Colon, J., Herrera, L., Smith, J., Patil, S., Komanski, C., Kupelian, P., Seal, S., Baker, C.H., (2009) Nanomed-Nanotech Biol Med, 5, pp. 225-231
  • Zholobak, N.M., Ivanov, V.K., Shcherbakov, A.B., Shaporev, A.S., Polezhaeva, O.S., Baranchikov, A.Y., Spivak, N.Y., Tretyakov, Y.D., (2011) J Photochem Photobiol B-Biol, 102, pp. 32-38
  • Chien, W.-C., Yu, Y.-Y., (2008) Mater Lett, 62, pp. 4217-4219
  • Pan, Y.X., Wu, M.M., Su, Q., (2004) J Phys Chem Solids, 65, pp. 845-850
  • Pan, Y.X., Wu, M.M., Su, Q., (2004) Mater Sci Eng B-Solid State Mater Adv Technol, 106, pp. 251-256
  • Ebendorff-Heidepriem, H., Ehrt, D., (2000) Optical Materials, 15, pp. 7-25
  • Zych, E., Brecher, C., Glodo, J., (2000) J Phys-Condens Matter, 12, pp. 1947-1958
  • Babu, S., Cho, J.-H., Dowding, J.M., Heckert, E., Komanski, C., Das, S., Colon, J., Seal, S., (2010) Chem Commun, 46, pp. 6915-6917
  • Kumar, A., Babu, S., Karakoti, A.S., Schulte, A., Seal, S., (2009) Langmuir, 25, pp. 10998-11007
  • Liu, X.H., Chen, S.J., Wang, X.D., (2007) J Luminescence, 127, pp. 650-654
  • Wang, Z., Quan, Z., Lin, J., (2007) Inorg Chem, 46, pp. 5237-5242
  • Ansari, A.A., Singh, S.P., Malhotra, B.D., (2011) J Alloys Compd, 509, pp. 262-265
  • Woan, K., Tsai, Y.Y., Sigmund, W., (2010) Nanomedicine, 5, pp. 233-242
  • Tsai, M.S., (2004) Mater Sci Eng B-Solid State Mater Adv Technol, 110, pp. 132-134
  • Lee, S.H., Lu, Z.Y., Babu, S.V., Matijevic, E., (2002) J Mater Res, 17, pp. 2744-2749
  • Kosynkin, V.D., Arzgatkina, A.A., Ivanov, E.N., Chtoutsa, M.G., Grabko, A.I., Kardapolov, A.V., Sysina, N.A., (2000) J Alloys Compd, 303, pp. 421-425
  • Krogman, K.C., Druffel, T., Sunkara, M.K., (2005) Nanotechnology, 16, pp. S338-S343
  • Karakoti, A., Singh, S., Dowding, J.M., Seal, S., Self, W.T., (2010) Chem Soc Rev, 39, pp. 4422-4432
  • Ivanov, V.K., Shcherbakov, A.B., Usatenko, A.V., (2009) Russian Chem Rev, 78, pp. 855-871
  • Korsvik, C., Patil, S., Seal, S., Self, W.T., (2007) Chemical. Communications, pp. 1056-1058
  • Das, M., Patil, S., Bhargava, N., Kang, J.F., Riedel, L.M., Seal, S., Hickman, J.J., (2007) Biomaterials, 28, pp. 1918-1925
  • Heckert, E.G., Karakoti, A.S., Seal, S., Self, W.T., (2008) Biomaterials, 29, pp. 2705-2709
  • Pirmohamed, T., Dowding, J.M., Singh, S., Wasserman, B., Heckert, E., Karakoti, A.S., King, J.E.S., Self, W.T., (2010) Chem Commun, 46, pp. 2736-2738
  • Celardo, I., Pedersen, J.Z., Traversa, E., Ghibelli, L., (2011) Nanoscale, 3, pp. 1411-1420
  • Miao, L., St, D.K., (2009) Clair. Free Radic Biol Med, 47, pp. 344-356
  • Singh, S., Dosani, T., Karakoti, A.S., Kumar, A., Seal, S., Self, W.T., (2011) Biomaterials, 32, pp. 6745-6753
  • Xue, Y., Luan, Q., Yang, D., Yao, X., Zhou, K., (2011) J Phys Chem C, 115, pp. 4433-4438
  • Celardo, I., De Nicola, M., Mandoli, C., Pedersen, J.Z., Traversa, E., Ghibelli, L., (2011) ACS Nano, 5, pp. 4537-4549
  • Preda, G., Migani, A., Neyman, K.M., Bromley, S.T., Illas, F., Pacchioni, G., (2011) J Phys Chem C, 115, pp. 5817-5822
  • Asati, A., Santra, S., Kaittanis, C., Nath, S., Perez, J.M., (2009) Angewandte Chemie-Int Edition, 48, pp. 2308-2312
  • Kuchma, M.H., Komanski, C.B., Colon, J., Teblum, A., Masunov, A.E., Alvarado, B., Babu, S., Baker, C.H., (2010) Nanomedicine-Nanotech Biol Med, 6 (6), pp. 738-744
  • Vincent, A., Inerbaev, T.M., Babu, S., Karakoti, A.S., Self, W.T., Masunov, A.E., Seal, S., (2010) Langmuir, 26, pp. 7188-7198
  • Karakoti, A.S., Singh, S., Kumar, A., Malinska, M., Kuchibhatla, S.V.N.T., Wozniak, K., Self, W.T., Seal, S., (2009) J the Am Chem Soc, 131, pp. 14144-14145
  • Safi, M., Sarrouj, H., Sandre, O., Mignet, N., Berret, J.F., (2010) Nanotechnology, 21, p. 145103
  • Hayes, S.A., Yu, P., O'keefe, T.J., O'keefe, M.J., Stoffer, J.O., (2002) J Electrochem Soc, 149, pp. C623-C630
  • Huang, S.F., Li, Z.Y., Wang, X.Q., Wang, Q.X., Hu, F.F., (2010) Ecotoxicol Environl Saf, 73, pp. 89-93
  • Heckert, E.G., Seal, S., Self, W.T., (2008) Environ Sci Technol, 42, pp. 5014-5019
  • Iuliano, L., Pedersen, J.Z., Ghiselli, A., Pratico, D., Rotilio, G., Violi, F., (1992) Arch Biochem Biophy, 293, pp. 153-157
  • Peng, Y., Chen, X., Yi, G., Gao, Z., (2011) Chem Commun, 47, pp. 2916-2918
  • Babu, S., Velez, A., Wozniak, K., Szydlowska, J., Seal, S., (2007) Chem Phys Lett, 442, pp. 405-408
  • Haley, T.J., (1965) J Pharm Sci, 54, pp. 663-670
  • Ivanov, V.K., Shcherbakov, A.B., Ryabokon, I.G., Usatenko, A.V., Zholobak, N.M., Tretyakov, Y.D., (2010) Doklady Chem, 430, pp. 43-46
  • Hirst, S.M., Karakoti, A.S., Tyler, R.D., Sriranganathan, N., Seal, S., Reilly, C.M., (2009) Small, 5, pp. 2848-2856
  • Rzigalinski BA, S. Seal, D. Bailey, S. Patil(2009) University of Central Florida Research Foundation Inc; Seal S, Patil SD, Haldar MK, Mallik S University of Central Florida Research Foundation Inc; Sugaya K, Merchant S, Seal S, Georgieva P, Vrotsos M University of Central Florida Research Foundation Inc; McGinnis JF, Chen J, Wong L, Sezate S, Seal S, Patil S (2008) University of Central Florida Research Foundation Inc; University of Oklahoma; Sicard, C., Perullini, M., Spedalieri, C., Coradin, T., Brayner, R., Livage, J., Jobbagy, M., Bilmes, S.A., (2011) Chem Mater, 23, pp. 1374-1378
  • Karakoti, A.S., Tsigkou, O., Yue, S., Lee, P.D., Stevens, M.M., Jones, J.R., Seal, S., (2010) J Mater Chem, 20, pp. 8912-8919
  • Hedrick, J.B., (1995) J Alloys and Compounds, 225, pp. 609-618
  • Choppin, G.R., (1991) Eur J Solid State Inorg Chem, 28, pp. 319-333
  • Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., Lead, J.R., (2008) Environ Toxicol Chem, 27, pp. 1825-1851
  • Kitto, M.E., Anderson, D.L., Gordon, G.E., Olmez, I., (1992) Environ Sci Technol, 26, pp. 1368-1375
  • Olmez, I., Gordon, G.E., (1985) Science, 229, pp. 966-968
  • http://ntp.niehs.nih.gov/files/Ceric_oxide2.pdf; http://pubs.healtheffects.org/getfile.php?u=295; http://www.epa.gov/iris/toxreviews/1018tr.pdf; Neal, A.L., (2008) Ecotoxicology, 17, pp. 362-371
  • Rogers, N.J., Franklin, N.M., Apte, S.C., Batley, G.E., Angel, B.M., Lead, J.R., Baalousha, M., (2010) Environ Chem, 7, pp. 50-60
  • Rodea-Palomares, I., Boltes, K., Fernandez-Pinas, F., Leganes, F., Garcia-Calvo, E., Santiago, J., Rosal, R., (2011) Toxicol Sci, 119, pp. 135-145
  • Van Hoecke, K., Quik, J.T.K., Mankiewicz-Boczek, J., De Schamphelaere, K.A.C., Elsaesser, A., Van Der Meeren, P., Barnes, C., Janssen, C.R., (2009) Environ Sci Technol, 43, pp. 4537-4546
  • Gaiser, B.K., Biswas, A., Rosenkranz, P., Jepson, M.A., Lead, J.R., Stone, V., Tyler, C.R., Fernandes, T.F., (2011) J Environ Monit, 13, pp. 1227-1235
  • Garcia, A., Espinosa, R., Delgado, L., Casals, E., Gonzalez, E., Puntes, V., Barata, C., Sanchez, A., (2011) Desalination, 269, pp. 136-141
  • Gaiser, B.K., Fernandes, T.F., Jepson, M., Lead, J.R., Tyler, C.R., Stone, V., (2009) Environl Health, 8
  • Johnston, B.D., Scown, T.M., Moger, J., Cumberland, S.A., Baalousha, M., Linge, K., Van Aerle, R., Tyler, C.R., (2010) Environ Sci Technol, 44, pp. 1144-1151
  • Roh, J.Y., Park, Y.K., Park, K., Choi, J., (2010) Environ Toxicol Pharm, 29, pp. 167-172
  • Zhang, H., He, X., Zhang, Z., Zhang, P., Li, Y., Ma, Y., Kuang, Y., Chai, Z., (2011) Environ Sci Technol, 45, pp. 3725-3730
  • Thill, A., Zeyons, O., Spalla, O., Chauvat, F., Rose, J., Auffan, M., Flank, A.M., (2006) Environ Sci Technol, 40, pp. 6151-6156
  • Fang, X., Yu, R., Li, B., Somasundaran, P., Chandran, K., (2010) J Coll Interf Sci, 348, pp. 329-334
  • Birbaum, K., Brogioli, R., Schellenberg, M., Martinoia, E., Stark, W.J., Guenther, D., Limbach, L.K., (2010) Environ Sci Technol, 44, pp. 8718-8723
  • Nel, A.E., Maedler, L., Velegol, D., Xia, T., Hoek, E.M.V., Somasundaran, P., Klaessig, F., Thompson, M., (2009) Nat Mater, 8, pp. 543-557
  • Nel, A., Xia, T., Madler, L., Li, N., (2006) Science, 311, pp. 622-627
  • Verma, A., Uzun, O., Hu, Y., Hu, Y., Han, H.-S., Watson, N., Chen, S., Stellacci, F., (2008) Nat Mater, 7, pp. 588-595
  • Taylor, U., Klein, S., Petersen, S., Kues, W., Barcikowski, S., Rath, D., (2010) Cytometry Part A, 77 A, pp. 439-446
  • Zhao, F., Zhao, Y., Liu, Y., Chang, X., Chen, C., Zhao, Y., (2011) Small, 7, pp. 1322-1337
  • Stark, W.J., (2011) Angewandte Chemie-Int Edition, 50, pp. 1242-1258
  • Baca, H.K., Carnes, E., Singh, S., Ashley, C., Lopez, D., Brinker, C.J., (2007) Acc Chem Res, 40, pp. 836-845
  • Baca, H.K., Ashley, C., Carnes, E., Lopez, D., Hemming, J., Dunphy, D., Singh, S., Fan, H., (2006) Science, 313, pp. 337-341
  • Singh, S., Kumar, A., Karakoti, A., Seal, S., Self, W.T., (2010) Mol Biosyst, 6, pp. 1813-1820
  • Li, Z., Sahle-Demessie, E., Hassan, A.A., Sorial, G.A., (2011) Water Res, 45, pp. 4409-4418
  • Jares-Erijman, E.A., Jovin, T.M., (2003) Nat Biotech, 21, pp. 1387-1395
  • Kahru, A., Savolainen, K., (2010) Toxicology, 269, pp. 89-91
  • Brunner, T.J., Wick, P., Manser, P., Spohn, P., Grass, R.N., Limbach, L.K., Bruinink, A., Stark, W.J., (2006) Environ Sci Technol, 40, pp. 4374-4381
  • Oberdorster, G., Oberdorster, E., Oberdorster, J., (2005) Environ Health Perspect, 113, pp. 823-839
  • Linse, S., Cabaleiro-Lago, C., Xue, W.-F., Lynch, I., Lindman, S., Thulin, E., Radford, S.E., Dawson, K.A., (2007) Proceedings of the National Academy of Sciences of the United States of America, 104, pp. 8691-8696
  • Chen, M., Von Mikecz, A., (2005) Exp Cell Res, 305, pp. 51-62
  • Franklin, N.M., Rogers, N.J., Apte, S.C., Batley, G.E., Gadd, G.E., Casey, P.S., (2007) Environ Sci Technol, 41, pp. 8484-8490
  • Xia, T., Kovochich, M., Liong, M., Mädler, L., Gilbert, B., Shi, H., Yeh, J.I., Nel, A.E., (2008) ACS Nano, 2, pp. 2121-2134
  • Gojova, A., Guo, B., Kota, R.S., Rutledge, J.C., Kennedy, I.M., Barakat, A.I., (2007) Environ Health Perspect, 115, pp. 403-409
  • Limbach, L.K., Wick, P., Manser, P., Grass, R.N., Bruinink, A., Stark, W.J., (2007) Environ Sci Technol, 41, pp. 4158-4163
  • Li, N., Hao, M.Q., Phalen, R.F., Hinds, W.C., Nel, A.E., (2003) Clin Immunol, 109, pp. 250-265
  • Xiao, G.G., Wang, M.Y., Li, N., Loo, J.A., Nel, A.E., (2003) J Biol Chem, 278, pp. 50781-50790
  • Lin, W., Huang, Y.-W., Zhou, X.-D., Ma, Y., (2006) Int J Toxicol, 25, pp. 451-457
  • Park, E.-J., Choi, J., Park, Y.-K., Park, K., (2008) Toxicology, 245, pp. 90-100
  • Pierscionek, B.K., Li, Y., Yasseen, A.A., Colhoun, L.M., Schachar, R.A., Chen, W., (2010) Nanotechnology, 21 (3), p. 035102
  • Schubert, D., Dargusch, R., Raitano, J., Chan, S.W., (2006) Biochem Biophys Res Commun, 342, pp. 86-91
  • Niu, J., Azfer, A., Rogers, L.M., Wang, X., Kolattukudy, P.E., (2007) Cardiovasc Res, 73, pp. 549-559
  • Lewinski, N., Colvin, V., Drezek, R., (2008) Small, 4, pp. 26-49
  • Medina, C., Santos-Martinez, M.J., Radomski, A., Corrigan, O.I., Radomski, M.W., (2007) British J Pharm, 150, pp. 552-558
  • Limbach, L.K., Li, Y.C., Grass, R.N., Brunner, T.J., Hintermann, M.A., Muller, M., Gunther, D., Stark, W.J., (2005) Environ Sci Technol, 39, pp. 9370-9376
  • Madler, L., Stark, W.J., Pratsinis, S.E., (2002) J Mater Res, 17, pp. 1356-1362
  • Jung, H.J., Kittelson, D.B., Zachariah, M.R., (2005) Combust Flame, 142, pp. 276-288
  • He, X., Zhang, H., Ma, Y., Bai, W., Zhang, Z., Lu, K., Ding, Y., Chai, Z., (2010) Nanotechnology, 21
  • Park, E.-J., Cho, W.-S., Jeong, J., (2010) Yi J.-h, Choi K, Kim Y, Park K. J Health Sci, 56, pp. 387-396
  • Yokel, R.A., Florence, R.L., Unrine, J.M., Tseng, M.T., Graham, U.M., Wu, P., Grulke, E.A., Butterfield, D.A., (2009) Nanotoxicology, 3, pp. 234-248
  • Damoiseaux, R., George, S., Li, M., Pokhrel, S., Ji, Z., France, B., Xia, T., Nel, A., (2011) Nanoscale, 3, pp. 1345-1360
  • Simonelli, F., Marmorato, P., Abbas, K., Ponti, J., Kozempel, J., Holzwarth, U., Franchini, F., Rossi, F., (2011) Ieee Transactions on Nanobioscience, 10, pp. 44-50
  • Park, B., Donaldson, K., Duffin, R., Tran, L., Kelly, F., Mudway, I., Morin, J.P., Martin, P., (2008) Inhalation Toxicol, 20, pp. 547-566
  • Auffan, M., Rose, J., Orsiere, T., De Meo, M., Thill, A., Zeyons, O., Proux, O., Bottero, J.-Y., (2009) Nanotoxicology, 3, pp. 161-U115
  • Rothen-Rutishauser, B., Grass, R.N., Blank, F., Limbach, L.K., Muehlfeld, C., Brandenberger, C., Raemy, D.O., Stark, W.J., (2009) Environ Sci Technol, 43, pp. 2634-2640
  • Perez, J.M., Asati, A., Nath, S., Kaittanis, C., (2008) Small, 4, pp. 552-556
  • Chen, J., Patil, S., Seal, S., McGinnis, J.F., (2006) Nat Nanotech, 1, pp. 142-150
  • Rzigalinski, B.A., Bailey, D., Chow, L., Kuiry, S.C., Patil, S., Merchant, S., Seal, S., (2003) Faseb J, 17, pp. A606-A606
  • Patil, S., Sandberg, A., Heckert, E., Self, W., Seal, S., (2007) Biomaterials, 28, pp. 4600-4607
  • Fu, P.P., Xia, Q.S., Lin, G., Chou, M.W., (2004) Drug Metab Rev, 36, pp. 1-55
  • Amin, K.A., Hassan, M.S., Awad, E.-S.T., Hashem, K.S., (2011) Int J Nanomed, 6, pp. 143-149
  • Asati, A., Santra, S., Kaittanis, C., Perez, J.M., (2010) ACS Nano, 4, pp. 5321-5331

Citas:

---------- APA ----------
Perullini, M., Aldabe Bilmes, S.A. & Jobbágy, M. (2013) . Cerium oxide nanoparticles: Structure, applications, reactivity, and eco-toxicology. Nanomaterials: A Danger or a Promise? A Chemical and Biological Perspective, 9781447142133, 307-333.
http://dx.doi.org/10.1007/978-1-4471-4213-3_12
---------- CHICAGO ----------
Perullini, M., Aldabe Bilmes, S.A., Jobbágy, M. "Cerium oxide nanoparticles: Structure, applications, reactivity, and eco-toxicology" . Nanomaterials: A Danger or a Promise? A Chemical and Biological Perspective 9781447142133 (2013) : 307-333.
http://dx.doi.org/10.1007/978-1-4471-4213-3_12
---------- MLA ----------
Perullini, M., Aldabe Bilmes, S.A., Jobbágy, M. "Cerium oxide nanoparticles: Structure, applications, reactivity, and eco-toxicology" . Nanomaterials: A Danger or a Promise? A Chemical and Biological Perspective, vol. 9781447142133, 2013, pp. 307-333.
http://dx.doi.org/10.1007/978-1-4471-4213-3_12
---------- VANCOUVER ----------
Perullini, M., Aldabe Bilmes, S.A., Jobbágy, M. Cerium oxide nanoparticles: Structure, applications, reactivity, and eco-toxicology. Nanomaterials: A Danger or a Promise? A Chem. and Biol. Perspect. 2013;9781447142133:307-333.
http://dx.doi.org/10.1007/978-1-4471-4213-3_12